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1 Introduction

In this paper we give a short overview of the state of the art of secret key block
ciphers. We focus on the main application of block ciphers, namely for encryp-
tion. The most important known attacks on block ciphers are linear cryptanalysis
and differential cryptanalysis. Linear cryptanalysis makes use of so-called linear
hulls i.e., the parity of a subset of plaintext bits which after a certain number of
rounds equals the parity of a subset of ciphertext bits with a probability suffi-
ciently far away from one half. Differential cryptanalysis makes use of so-called
differentials (A, B), i.e., a pair of plaintexts with difference A, which after a
certain number of rounds result in a difference B with a high probability. The
hulls and differentials can be used to derive (parts of) the secret key.

Also, several extensions of the two above attacks have been introduced lately:
the truncated differential attack [38,39], the higher order differential attack
[43,38,28], the multiple linear attack [30], and the non-linear/linear attack [41].
Also, a combination of the two methods, the differential-linear attack [27], has
been considered. Other (general) attacks are the non-surjective attack [68] and
the interpolation attack [28].

To improve resistance against differential and linear cryptanalysis it has been
suggested to use power polynomials in a finite field [3,62,51]. On the other hand,
it has been shown that if a cipher consists solely of such functions other efficient
attacks become possible [28]. Another well-known way of improving the security
of a block cipher is by means of multiple encryption, i.e., where a plaintext block
is processed several times using the same (component) block cipher with different
keys.

In § 2 an introduction to block ciphers is given and § 3 lists and discusses the
modes of operation for encryption. In § 4 we describe the theoretical and practical
security of block ciphers. The most important methods of cryptanalysing block
ciphers are given in § 5. § 6 discusses design principles of block ciphers, in
particular it is shown how to build ciphers immune to the attacks described in
previous sections. The theory of multiple encryption is described in § 7. In § 8
we summarise our results.

2 Block Ciphers - Introduction

The history of cryptography is long and goes back at least 4000 years to the
Egyptians, who used hieroglyphic codes for inscription on tombs [18]. Since then
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many cryptosystems, also called ciphers, have been developed and used. Many of
these old ciphers are much too weak to be used in applications today, because of
the tremendous progress in computer technology. There are essentially two types
of cryptosystems, one-key and two-key ciphers. In one-key ciphers the encryption
of a plaintext and the decryption of the corresponding ciphertext is performed
using the same key. Until 1976 when Diffie and Hellman introduced public-key or
two-key cryptography [21] all ciphers were one-key systems. Therefore one-key
ciphers are also called conventional cryptosystems. Conventional cryptosystems
are widely used throughout the world today, and new systems are published
frequently. There are two kinds of one-key ciphers, stream ciphers and block ci-
phers. In stream ciphers a long sequence of bits is generated from a short string
of key bits, and is then added bitwise modulo 2 to the plaintext to produce the
ciphertext. In block ciphers the plaintext is divided into blocks of a fixed length,
which are then encrypted into blocks of ciphertexts using the same key. Block
ciphers can be divided into three groups: substitution ciphers, transposition ci-
phers and product ciphers. In the following a few examples of the different types
of block ciphers are given.

Notation: Let AM and AC be the alphabets for plaintexts and ciphertexts,
respectively. Let M = m0, m1, . . . , mn−1 be an n-character plaintext, s.t. for
every i, mi ∈ AM and let C = c0, c1, . . . , cn−1 be a ciphertext, s.t. for every i,
ci ∈ AC . We assume that an alphabet AX is isomorphic with INAX .

2.1 Substitution Ciphers

As indicated in the name every plaintext character is substituted by some ci-
phertext character. There are four kinds of substitution ciphers.

– Simple substitution
– Polyalphabetic substitution
– Homophonic substitution
– Polygram substitution

We restrict ourselves to consider substitution ciphers of the first two kinds.

Simple Substitution In a cipher with a simple substitution each plaintext
character is transformed into a ciphertext character via the same function f.
More formally, ∀i : 0 ≤ i < n

f : AM → AC
ci = f(mi)

It is believed that Julius Caesar encrypted messages by shifting every letter in the
plaintext 3 positions to the right in the alphabet. This cipher is based on shifted
alphabets , i.e., AM = AC , and is in general defined as follows f(mi) = mi + k
(mod |AM|). For the Caesar cipher the secret key k is the number 3. In general,
the cipher is easily broken in at most |AM| trials. Shift the ciphertexts one
position until the plaintext arises.
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Polyalphabetic Substitution In a polyalphabetic substitution the plaintext
characters are transformed into ciphertext characters using a j-character key
K = k0, . . . , kj−1, which defines j distinct functions fk0 , . . . , fkj−1 . More formally
∀i : 0 < i ≤ n

fkl
: AM → AC ∀l : 0 ≤ l < j

ci = fki mod j
(mi)

The Vigenère cipher was first published in 1586 [19]. Let us assume again that
AM = AC . Then the Vigenère cipher is defined as follows

ci = fki mod j
(mi) = mi + ki mod j (mod |AM|)

2.2 Transposition Systems

Transposition systems are essentially permutations of the plaintext characters.
Therefore AM = AC . A transposition cipher is defined as follows ∀i : 0 ≤ i < n

f : AM → AM
η : {0, . . . , (n− 1)} → {0, . . . , (n− 1)}, a permutation
ci = f(mi) = mη(i)

Many transposition ciphers permute characters with a fixed period j. In that
case

f : AM → AM
η : {0, . . . , (j − 1)} → {0, . . . , (j − 1)}, a permutation
ci = f(mi) = m(i div j)+η(i mod j)

The Vigenère and in general substitution ciphers can be broken when enough
ciphertext is available to the cryptanalyst by the index of coincidence, Kasiski’s
method, etc. [18,19,29]. Transposition ciphers can be broken using the frequency
distributions for digrams, trigrams and N-grams [18,19,29]. The interested reader
will find a comprehensive treatment of early cryptanalysis in [29].

2.3 Product Systems

An obvious attempt to make stronger ciphers than the ones we have seen so far,
is to combine substitution and transposition ciphers. These ciphers are called
product ciphers. Many product ciphers have been developed, including Rotor
machines [18]. Most of the block ciphers in use today are product ciphers. A
product cipher is called an iterated cipher if the ciphertext is computed by
iteratively applying a round function several times to the plaintext. In each
round a round key is combined with the text input.
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Definition 1. In an r-round iterated block cipher the ciphertext is com-
puted by iteratively applying a round function g to the plaintext, s.t.

Ci = g(Ci−1, Ki), i = 1, .....r, (1)

where C0 is the plaintext, Ki a round key and Cr is the ciphertext. Decryption
is done by reversing (1), therefore, for a fixed key Ki, g must be invertible.

In this paper we consider only iterated block ciphers and assume that the plain-
texts and ciphertexts are bit strings of equal length.

A special class of iterated ciphers are the Feistel ciphers, named after Horst
Feistel [23]

Definition 2. A Feistel cipher with block size 2n and with r rounds is defined
as follows. The round function is defined

g : GF (2n)×GF (2n)×GF (2m) → GF (2n)×GF (2n)

g(X, Y, Z) = (Y, F (Y, Z) + X)

where g can be any function taking two arguments of n bits and m bits respectively
and producing n bits. ‘+’ is a commutative group operation on the set of n-bit
blocks. Given a plaintext P = (P L, PR) and r round keys K1, K2, ..., Kr the
ciphertext C = (CL, CR) is computed in r rounds. Set CL

0 = PL and CR
0 = PR

and compute for i = 1, 2, ..., r

(CL
i , CR

i ) = (CR
i−1, F (CR

i−1, Ki) + CL
i−1)

Set Ci = (CL
i , CR

i ) and CL = CR
r and CR = CL

r . The round keys (K1, ..., Kr),
where Ki ∈ GF (2m), are computed by a key schedule algorithm on input a master
key K.

We will assume that ‘+’ is the bitwise exclusive-or operation, if not explicitly
stated otherwise.

The Data Encryption Standard (DES) [63] is by far the most widely used it-
erated block cipher today. Around the world, governments, banks, and standards
organisations have made the DES the basis of secure and authentic communica-
tion [75]. The DES is a Feistel cipher, but with special properties. In general we
define the so-called DES-like iterated ciphers.

Definition 3. A DES-like iterated cipher is a Feistel cipher, where the F
function is defined

F (X, Ki) = f(E(X) + Ki)
f : GF (2m) → GF (2n), m ≥ n

E : GF (2n) → GF (2m), an affine expansion mapping
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3 Modes of Operations

The most obvious and widespread use of a block cipher is for encryption. In 1980
a list of four modes of operation for the DES was published [64]. These four modes
can be used with any block cipher and seem to cover most applications of block
ciphers used for encryption [18]. In the following let EK(·) be the permutation
induced by using the block cipher E of block length n with the key K and let
P1, P2, ....., Pi, ... be the blocks of plaintexts to be encrypted. The four modes
are

– Electronic Code Book (ECB) The native mode, where one block at a
time is encrypted independently of the encryptions of other blocks.

Encryption: Ci = EK(Pi)

Decryption: Pi = EK(Ci)

– Cipher Block Chaining (CBC) The chaining mode, where the encryption
of a block depends on the encryptions of previous blocks.

Encryption: Ci = EK(Pi ⊕ Ci−1)

Decryption: Pi = DK(Ci)⊕ Ci−1

where C0 is a chosen initial value.
– Cipher Feedback (CFB) The first stream mode, where one m-bit char-

acter at a time is encrypted.

Encryption: Ci = Pi ⊕MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ Ci

Decryption: Pi = Ci ⊕MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ Ci

where X1 is a chosen initial value, ‖ denotes concatenation of blocks, MSBs

and LSBs denote the s most and least significant bits respectively or equiva-
lently the leftmost and rightmost bits respectively. Here m can be any num-
ber between 1 and the block length of the cipher. If the plaintext consists of
characters m = 7 or m = 8 is usually the well-chosen parameter.

– Output Feedback (OFB) The second stream mode, where the stream bits
are not dependent on the previous plaintexts, i.e., only the stream bits are
fed back, not the ciphertext as in CFB mode.

Encryption: Ci = Pi ⊕MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ MSBm(EK(Xi))

Decryption: Pi = Ci ⊕MSBm(EK(Xi))
Xi+1 = LSBn−m(Xi) ‖ MSBm(EK(Xi))

where X1 is a chosen initial value.
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In fact, both the CFB and OFB modes have two parameters, the size of the
plaintext block and the size of the feedback value. In the above definition we
have chosen them equal and will do so also in the following.

The ECB is the native mode, well-suited for encryption of keys of fixed
length. It is not suited for the encryption of larger plaintexts, since equal blocks
are encrypted into equal blocks. To avoid this, the CBC mode is recommended.
Not only does a current ciphertext block depend on the current plaintext but
also on all previous ciphertext blocks. In some applications there is a need for
encryptions of characters, instead of whole blocks, e.g., 8 bytes for the CBC
mode of DES. For that purpose the CFB and OFB modes are suitable. It is often
recommended to use the OFB mode only with full feedback, i.e., with m = n (64
for the DES). It comes from the fact, that for m < n the feedback function is not
one-to-one, and therefore has a relatively short cycle [18] of length about 2n/2.
Furthermore the initial value X1 in the OFB mode should be chosen uniformly at
random. For example, in the case where X1 is the concatenation of n/m equal
m-bit blocks, say (a ‖ a ‖ .... ‖ a), for about 2k−m keys MSBm(EK(X1)) = a.
Therefore X2 = X1 and in general Xi = X1. This is not dangerous for the CFB
mode, where the Xi’s are also dependent on the plaintext.

Error Propagation An important issue in the applications of the four modes
is how an error in the transmission of ciphertexts is propagated. In the ECB
mode an error in a ciphertext block affects only one plaintext block. A lost
ciphertext block results in a lost plaintext block. An error in a ciphertext block
in the CBC mode affects two plaintexts blocks. As an example, assume that
ciphertext C3 has an error and that all other ciphertext blocks are error-free,
then P4 = DK(C4)⊕ C3 inherits the error from C3 and P3 = DK(C3)⊕C2 will
be completely garbled. Here we assume that even a small change in the input
to the block cipher will produce a randomly looking output. All other plaintexts
will be decrypted correctly. A lost ciphertext block results in a lost plaintext
block and an error in one addition plaintext block. The mode synchronises itself
after that. In the CFB mode an error in a ciphertext block Ci will be inherited
by the corresponding plaintext block Pi, and moreover since Xi+1 contains the
garbled Ci the subsequent plaintexts blocks will be garbled until the X value is
free of Ci, i.e., when Ci has been shifted out. In other words in CFB mode with
m-bit ciphertexts, at most n/m + 1 plaintext blocks will be garbled. The case
of lost ciphertext blocks is similar to that of the CBC mode. In the OFB mode,
since the feedback is independent of the plain- and ciphertexts, a transmission
error in a ciphertext block garbles only the corresponding plaintext block and is
not propagated to other plaintext blocks. On the other hand, a lost ciphertext
block will result in an infinite error propagation.
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4 Security of Secret Key Block Ciphers

When discussing the security of cryptographic systems one needs to define a
model of the reality. We will use the model of Shannon [73], which is depicted
in Figure 1.

Message Source Sender

Key Source

Receiver-P -C C

66

?

Enemy

KK

-P

Fig. 1. Shannon’s model of a general secrecy system.

The sender and the receiver share a common key K, which has been trans-
mitted over a secure channel. The sender encrypts a plaintext P using the secret
key K, sends C over an insecure channel to the receiver, who restores C into P
using K. The attacker has access to the insecure channel and can intercept the
ciphertexts (cryptograms) sent from the sender to the receiver. In this section
we assume that the legitimate sender and receiver use a secret key cipher EK(·)
of block size n (bits), where the key K is of size k bits. To avoid an attacker to
speculate in how the legitimate parties have constructed their common key, we
will assume

Assumption 1 All keys are equally likely and a key K is always chosen uni-
formly random.

Also we will assume that all details about the cryptographic algorithm used by
the sender and receiver are known to the attacker, except for the secret key. This
assumption is known as Kerckhoffs’s Assumption [29].

Assumption 2 The enemy cryptanalyst knows all details of the enciphering
process and deciphering process except for the value of the secret key.

4.1 Classification of Attacks

Using these assumptions we classify the possible attacks an attacker can do.

– Ciphertext only attack. The attacker possesses a set of intercepted ci-
phertexts.
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– Known plaintext attack. The attacker obtains P1, P2, ..., Ps a set of s
plaintexts and the corresponding ciphertexts C1, C2, ..., Cs.

– Chosen plaintext attack. The attacker chooses a priori a set of s plain-
texts P1, P2, ..., Ps and obtains in some way the corresponding ciphertexts
C1, C2, ..., Cs.

– Adaptively chosen plaintext attack. The attacker chooses a set of plain-
texts P1, P2, ..., Ps interactively as he obtains the corresponding ciphertexts
C1, C2, ..., Cs. That is, the attacker chooses P1, obtains C1, then chooses P2

etc.
– Chosen ciphertext attacks. For symmetric ciphers these are similar to

those of chosen plaintext attack and adaptively chosen plaintext attack,
where the roles of plain- and ciphertexts are interchanged.

The chosen text attacks are obviously the most powerful attacks. In many appli-
cations they are however also unrealistic attacks. If the plaintext space contains
redundancy, it will be hard for an attacker to ‘trick’ a legitimate sender into
encrypting non-meaningful plaintexts and similarly hard to get ciphertexts de-
crypted, which do not yield meaningful plaintexts. But if a system is secure
against an adaptively chosen plaintext/ciphertext attack then it is also secure
against all other attacks. An ideal situation for a designer would be to prove that
her system is secure against an adaptively chosen plaintext attack, although an
attacker may never be able to mount more than a ciphertext only attack.

4.2 Theoretical Secrecy

In his milestone paper from 1949 [73] Shannon defines perfect secrecy for secret
key systems and shows that they exist. We will now give a brief description of
Shannon’s theory and the most important results. Let P, C and K be the random
variables representing the plaintexts, ciphertexts and the keys respectively. Let
PX(x) be the probability that the random variable X takes on the value x.

Definition 4 ([73]). The uncertainty (entropy) H(X) of a random variable
X is defined as the expectation of the negative logarithm of the corresponding
probability distribution.

Using the logarithm base 2, we get

H(X) def= E[−log2PX(x)] = −
∑

x∈supp(PX)

PX(x)× log2PX(x)

where supp(PX) def= {x : PX(x) 6= 0}. When using this logarithm the entropy of
X can be seen as the number of bits needed to represent (the possible values of)
X in an optimal binary coded form. The conditional entropy of X given Y
is defined as

H(X|Y) def= E[−log2PX|Y (X |Y )]

= −
∑

x,y∈supp(PX,Y)

PX,Y(x, y)× log2PX|Y(x|y).
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In other words the uncertainty about X given that Y is known. The quantity
I(X ; Y ) = H(X)−H(X|Y) is called the information that Y gives about X.

Definition 5 ([73]). A secret key cipher is perfect if and only if H(P) =
H(P|C), i.e., when the ciphertext C gives no information about the plaintext P.

This definition leads to the following result.

Corollary 1. A perfect cipher is unconditionally secure against a ciphertext
only attack.

As noted by Shannon the Vernam cipher, also called the one-time pad , is a perfect
secret key cipher. In the one-time pad the plaintext characters are exclusive-
or’ed with independent key characters to produce the ciphertexts. However, the
practical applications of perfect secret key ciphers are limited, since, as also
noted by Shannon, it requires as many digits of secret key as there are digits
to be enciphered [46]. A less stringent form of theoretical secrecy is possible,
defined by Shannon in terms of

Definition 6 ([73]). The unicity distance, nud, of a cipher is the smallest
number s such that there is essentially only one value of the secret key K that
is consistent with the ciphertexts C1, ..., Cs.

In other words, the unicity distance is the smallest s, s.t.

H(K|C1, ..., Cs) ' 0

The unicity distance depends on both the key size and on the redundancy in
the plaintext space. Redundancy is an effect of the fact that certain plaintext
characters appear more frequently than others. For a block cipher of size n, the
redundancy ρ is defined as

ρ = 1−H(P)/n

where P is the random variable representing the plaintexts. H(P)/n estimates
the average number of bits of information per bit in a plaintext.

Theorem 1 ([73]). The unicity distance of a cipher is

nud =
H(K)

ρ

where ρ is the redundancy of the plaintext space.

The smallest number Nud, such that Nud is a multiple of the block size n and
Nud ≥ nud, is the least number of ciphertext bits an attacker needs from a
legitimate sender in order to at least in principle be able to determine a unique
key in a ciphertext only attack.

Example 1 ([46]). The redundancy of English language messages is about 0.8.
So for the DES, k = 56, n = 64 and

nud =
56
0.8

' 70

Therefore Nud is 128 bits, the same as two ciphertext blocks.
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Although the unicity distance is small as in the example, it does not necessarily
mean that the DES can be broken using only 2 known ciphertexts. First of all,
Shannon’s measures are made using a random cipher model, but more impor-
tant, the unicity distance gives no indication of the computational difficulty in
breaking a cipher, merely a lower bound on the amount of ciphertext needed in
a ciphertext only attack. However, if the plaintext space contains (close to) no
redundancy, the unicity distance will tend to infinity, i.e., nud ;∞ as ρ; 0. In
this case a ciphertext only attack will never succeed. A cipher, for which it can
be shown that H(K|C1, ..., Cs) never approaches zero, even for large s, is called
a strongly ideal cipher.

One way to remove the redundancy in a plaintext space is by data compres-
sion, but no known methods achieve perfect data compression [42]. Since perfect
and strongly ideal ciphers are both impractical, we also consider computationally
secrecy, or practical secrecy.

4.3 Practical Secrecy

Traditionally, cryptanalysis has been very focused on finding the key K of a
secret key cipher. However, there are other serious attacks, which do not find the
secret key. We classify the types of breaking a block cipher as follows, inspired by
the classification of forgeries on digital signature systems given by Goldwasser,
Micali and Rivest in [24,25].

– Total break. An attacker finds the secret key K.
– Global deduction. An attacker finds an algorithm A, functionally equiva-

lent to EK(·) (or DK(·)) without knowing the key K.
– Instance (local) deduction. An attacker finds the plaintext (ciphertext)

of an intercepted ciphertext (plaintext), which he did not obtain from the
legitimate sender.

– Information deduction. An attacker gains some (Shannon) information
about key, plaintexts or ciphertexts, which he did not get directly from the
sender and which he did not have before the attack.

Clearly, this classification is hierarchical, i.e., if a total break is possible, then
a global deduction is possible etc. We assume that all the above attacks are
independent of how the keys used by the legitimate parties are chosen, i.e., we
use Assumption 1. A global deduction is possible when a block cipher contains a
“block structure”. If certain subsets of the ciphertext are independent of certain
subsets of the plaintext, then no matter how long the key is, the block cipher
is vulnerable to a global deduction in a known plaintext attack. Also, in iter-
ated block ciphers the round keys are sometimes generated in a one-way fashion
[69,72,16,17]. So in attacks, which find the round keys, it may be impossible for
the attacker to derive the actual value of the secret key, but at the same time the
round keys enable the attacker to encrypt and decrypt. An instance deduction
can be as dangerous as a total break, if the number of likely plaintexts is small.
Consider the situation where the block cipher is used for encrypting a key in a
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key-exchange protocol. Here only one plaintext is encrypted and a total break
is equal to an instance deduction. Information deduction is the least serious at-
tack, however the legitimate parties are often interested in that no information
at all about the plaintexts are obtained by any enemies, which is particularly
dangerous if the plaintext space is highly redundant.

Brute-Force (Trivial) Attacks.

– Total break. All block ciphers are totally breakable in a ciphertext only
attack, simply by trying all keys one by one and checking whether the com-
puted plaintext is meaningful, using only about Nud ciphertexts. This attack
requires the computation of about 2k encryptions.
Alternatively, one has the table look-up attack, where the attacker, encrypts
in a pre-computation phase a fixed plaintext P under all possible keys and
sorts and stores all the ciphertexts. Thereafter the cipher is total breakable
in a chosen plaintext attack requiring one chosen plaintext. There might be
some keys encrypting P into the same ciphertext. Repeating the attack a
few times with P ′ 6= P will give a unique key.

– Global/instance deduction. All block ciphers are globally/instance de-
ducible under a known/chosen plaintext attack. Simply get and store all
possible plaintext/ciphertext pairs. The running time of a deduction is the
time of one table look-up.

– Information deduction. All block ciphers are information deducible in
a ciphertext only attack. Consider a block cipher used in the ECB mode.
Denote two plaintexts by Pi and Pj and assume that an attacker inter-
cepted the two corresponding ciphertext blocks, Ci and Cj . It follows that
H(Pi, Pj |Ci, Cj) < H(Pi, Pj), since Ci 6= Cj ⇒ Pi 6= Pj , and Ci = Cj ⇒
Pi = Pj

1. Since I(Pi, Pj ; Ci, Cj) = H(Pi, Pj) − H(Pi, Pj |Ci, Cj), it follows
that I(Pi, Pj ; Ci, Cj) > 0, i.e., the attacker gains information about the
plaintext blocks from two ciphertext blocks. Obviously, the more ciphertext
blocks available to the attacker the more information is gained. A similar
result holds for other modes.

The information deduction just shown is trivial and results in only small infor-
mation. The following general result shows that a non-trivial information gain
can be obtained when about the square root of all ciphertexts are available.

Theorem 2 ([35]). Every n-bit block cipher used in the ECB, CBC or CFB
mode is information deducible in a ciphertext only attack with complexity about
2n/2.

Note that the result of Theorem 2 is independent of the key size.
Also, Hellman [26] has presented a time-memory trade-off attack on any block

cipher, which finds the secret key after 22k/3 encryptions using 22k/3 words of

1 Here we assume, that the attacker does not a priori have this information about the
plaintexts.
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memory. The 22k/3 words of memory are computed in a pre-processing phase,
which takes the time of 2k encryptions.

To estimate the complexity of a cryptanalytic attack one must consider both
the time it takes, the amount of data that is needed and the storage requirements.
For an n-bit block cipher the following complexities should be considered.

– Data complexity. The amount of data needed as input to an attack. Units
are measured in blocks of length n. We denote this complexity Cd.

– Processing complexity. The time needed to perform an attack. Time units
are measured as the number of encryptions an attacker has to do himself.
We denote this complexity Cp.

– Storage complexity. The words of memory needed to do the attack. Units
are measured in blocks of length n. We denote this complexity Cs.

As a rule of thumb, the complexity of an attack is taken to be the maximum
of the three complexities, i.e., Ca = max(Cd, Cp, Cs). In general, there are some
deviations from this rule and furthermore the three types of complexity of an
attack are relative to the attacker. As an example, we may say that the above
attack by Hellman [26] on the DES has complexity 22×56/3 ' 238. Although
the time of the pre-computation phase is 256, first of all, it is done only once
after which any DES-key can be derived with complexity 238, secondly 256 DES
encryptions can be done reasonable fast in hardware on specially designed ma-
chines [81]. On the other hand, the storage requirements may be unrealistic for
most attackers, e.g., the attack on the DES will require about 1000 Gigabytes
of memory.

5 Cryptanalysis of Block Ciphers

The history of cryptanalysis is long and at least as fascinating as the history of
cryptography. As a single example, in 1917 in an article in “Scientific American”
the Vigenère cipher was claimed to be “impossible of translation” [19]. Today,
it is an exercise in cryptography classes to illustrate that this claim is not true.

5.1 Differential Cryptanalysis

The most well-known method of analysing conventional cryptosystems today
is differential cryptanalysis, published by Eli Biham and Adi Shamir in 1990.
The method has proved to be very efficient and cryptosystems, which have been
conjectured strong, have been broken, for some systems (e.g., GDES) almost
alarmingly easy [5]. Differential cryptanalysis has been applied to a wide range
of iterated ciphers including the DES [63], GDES [70,71], Lucifer [76,2], FEAL
[74,56], LOKI’89 [9,34], REDOC [12], PES [44], Khafre [54], SAFER [47,48,37],
RC5 [69], and IDEA [44,8]. For this reason the differential attack must be consid-
ered one of the most general cryptanalytic attacks known to date. Furthermore,
differential cryptanalysis has caused the revision and redesign of several cryp-
tosystems and was the first attack which could (theoretically) recover DES keys
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in time less than the expected cost of exhaustive search [5,6]. Differential crypt-
analysis is universal in that it can be used against any cryptographic mapping
which is constructed from iterating a fixed round function. We will give a brief
description of differential cryptanalysis with respect to a general n-bit iterated
cipher, cf., Definition 1.

One usually defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (2)

where ⊗ is the group operation on the group of bit strings used to combine the
key with the text input in the round function and where (X)−1 is the inverse
element of X with respect to ⊗. The idea behind this is, that the differences be-
tween the texts before and after the key is combined are equal, i.e., the difference
is independent of the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

However, in a strong encryption algorithm there will be some components which
are non-linear in the ⊗-operation. In a differential attack one exploits that for
certain input differences the distribution of output differences of the non-linear
components is non-uniform.

Definition 7. An s-round characteristic is a series of differences defined as an
s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

The probability of a characteristic is derived from the probability that ∆Ci is the
difference after i rounds given that ∆Ci−1 is the difference after i − 1 rounds.
Define pi as the probability that inputs of difference αi−1 lead to output of
difference αi, where the probability is taken over all choices of the round key
and the inputs to the ith round. In [44] the notion of a Markov cipher was
introduced. In a Markov cipher this probability is independent of the actual
inputs of the round and is calculated over all possible choices of the round key.
Also in [44] it was shown that in a Markov cipher if the round keys Ki are
independent then the pi’s are also independent and

Pr(∆Cs = αs |∆P0 = α0) =
s∏

i=1

Pr(∆Ci = αi |∆Ci−1 = αi−1). (3)

Experimental results on DES, LOKI, and FEAL [5,35] have shown that in these
ciphers (3) is a good approximation of the probability, when the round keys are
dependent, e.g., derived from a key schedule algorithm. Although in general one
defines a difference according to (2), for some ciphers such as RC5, it “pays off”
to choose another difference, which was illustrated in [40].

Assume without loss of generality that the operation ⊗ is is the exclusive-or
operation (⊕). Consider an iterated block cipher as defined in Definition 1. Let
Cr and C′

r be the ciphertexts for some plaintext pair. In a chosen plaintext attack
the cryptanalyst does not know the inputs Cr−1 and C′

r−1 to the final round.
However, a characteristic can be chosen so that the difference of the ciphertexts



Block Ciphers — A Survey 31

after r−1 rounds of encryptions, ∆Cr−1, is known either completely or partially
with probability p. Then for two ciphertexts C, C′ the cryptanalyst will try to
solve the following equation for Kr

g−1(Cr , Kr)⊕ g−1(C′
r , Kr) = ∆Cr−1. (4)

Sometimes one does not recover the entire value of Kr, and the remaining key bits
are then found by an exhaustive search. The method of differential cryptanalysis
can be summarized as follows:

1. Find a highly probable (r − 1)-round characteristic {∆P, ∆C1, . . . , ∆Cr−1}
which (partially) predicts ∆Cr−1.

2. Select a random plaintext P , compute P ′ according to ∆P and get the
encryptions of the pair. Determine candidate round keys kr, which satisfy
(4). Increment a counter for each candidate round key kr.

3. Repeat Step 2 until one round key kr is distinguished as being counted
significantly more often than other round keys. Take kr to be the actual
round key Kr.

In some differential attacks using an (r− 1)-round characteristic only the plain-
text difference ∆P and the last ciphertext difference ∆Cr−1 need to be fixed.
That is, the intermediate differences ∆C1, ∆C2, . . . , ∆Cr−2 can have any value.
Lai and Massey introduced the notion of differentials [44].

Definition 8. An s-round differential is a pair of differences {α0, αs}, where
∆P = α0, ∆Cs = αs.

The probability of an s-round differential (∆P, ∆Cs) is the conditional proba-
bility that given an input difference ∆P at the first round, the output difference
at the sth round will be ∆Cs. More formally, the probability of an s-round
differential is given as

Pr(∆Cs = βs | ∆P = β0) =
∑

β1

· · ·
∑

βs−1

s∏

i=1

Pr(∆Ci = βi | ∆Ci−1 = βi−1), (5)

where ∆C0 = ∆P . A differential will, in general, have a higher probability
than a corresponding characteristic. Differentials were used by Knudsen and
Nyberg to show how to obtain immunity against differential attacks [62]. Also, for
some ciphers there is a significant advantage in considering differentials instead
of characteristics. As an example, the differential used to attack RC5 in [40]
with w = 32 and 12 rounds has a probability of 2−53 and a corresponding
characteristic has a probability of only 2−96.

Experiments on restricted versions of DES [5] showed that the number of
chosen plaintexts needed by the differential attack is approximately 1/p, where
p is the probability of the differential being used.

In a differential attack the attacker does not know the key. Therefore in find-
ing a good differential, the attacker computes the probabilities of differentials
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assuming that all the round keys are uniformly random and independent. How-
ever, the pairs of encryption an attacker gets are encrypted using the same key,
where the round keys are fixed and (can be) dependent. Put informally “there
is a difference between what an attacker can expect to see and what he actually
sees”. In [42] this problem is dealt with as follows

Definition 9 ((Hypothesis of stochastic equivalence)). For virtually all
high probability (r − 1)-round differentials (α, β)

PrP (∆C1 = β | ∆P = α, K = k) ≈ PrP,K(∆C1 = β | ∆P = α, )

holds for a substantial fraction of the key values k.

In a recent differential attack by Knudsen and Rijmen on IDEA [8], it was
exploited that the hypothesis of stochastic equivalence does not hold for IDEA
reduced to 3,5 rounds.

Higher Order Differentials In [43] Lai gave a definition of higher order deriva-
tives of discrete functions. Later Knudsen used higher order differentials to crypt-
analyse ciphers presumably secure against conventional differential attacks, i.e.,
attacks based on first order differentials [38]. Jakobsen and Knudsen [28] ex-
tended these attacks and applied them to the cipher of [62]. We refer to [43,38]
for the definitions of higher order differentials. By the reduced cipher , we denote
the cipher that one gets by removing the final round of the original cipher.

The output bits of the reduced cipher are all expressible as polynomials
GF (2)[x1, x2, . . . , xn], where x1, x2, . . . , xn are (a subset of) plaintext bits. As-
sume that these polynomials have degree not higher than d. Then according to
[43, Proposition 2] (see also [38]), we have

∑

x∈Ld

p(x) = c, (6)

where Ld denotes a d-dimensional subspace of GF (2)n, c is the same for any
space parallel to Ld, and p is a function which computes the output from the
reduced cipher. It follows that

σ(w) =
∑

x∈Ld+1

p(x + w) = 0 for all w ∈ GF (2)n (7)

if and only if p(x) is a polynomial of degree d or lower. If d is sufficiently low,
the block cipher can be attacked as follows. For all values of the key in the last
round, decrypt all ciphertexts one round, obtaining the output of the reduced
cipher, and compute the value of σ(w). The keys for which σ(w) ends up being
zero are candidates for the correct value of the last-round key. By repeating the
attack a few times only one (or a few) values of the last-round key will be left
suggested. Jakobsen and Knudsen applied this method to the cipher example
given in [62]. This cipher is “provably secure” against a differential attack. In a
higher order differential attack this cipher is broken using only 29 = 512 chosen
plaintexts and a running time of 241.
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Truncated Differentials In some ciphers it is possible and advantageous to
predict the values of parts of the differences after each round of the cipher. The
notion of truncated differentials was introduced by Knudsen in [38]:

Definition 10. A differential that predicts only parts of an n-bit value is called
a truncated differential. More formally, let (a, b) be an i-round differential. If
a′ is a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an
i-round truncated differential.

A truncated differential can be seen as a collection of differentials. As an example,
consider an n-bit block cipher and the truncated differential (a′, b), where a′

specifies the least n′ < n significant bits of the plaintext difference and b specifies
the ciphertext difference of length n. This differential is a collection of all 2n−n′

differentials (a, b), where a is any value, which truncated to the n′ least significant
bits is a′.

The truncated differentials were used in [39] to attack 5 rounds of the 6 round
SAFER K [47,48] in time only 237 with 245 chosen plaintexts. In [48] a differential
attack using conventional differentials on SAFER K with 5 rounds was estimated
to require more computations than a brute-force exhaustive attack. Also, in [8]
a truncated differential attack was presented on 3,5 rounds of IDEA [44].

5.2 Linear Cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [49]. A preliminary version
of the attack on FEAL was described in 1992 [52]. Linear cryptanalysis [49] is
a known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, ciphertext and key. In the attack on the DES
(or on DES-like iterated ciphers) the linear approximations are obtained by
combining approximations for each round under the assumption of independent
round keys. The attacker hopes in this way to find an expression (8), which holds
with probability pL 6= 1

2 over all keys [49], such that |pL − 1
2 |, called the bias, is

maximal.
(P · α)⊕ (C · β) = (K · γ) (8)

where P, C, α, β, γ are m-bit strings and where ‘·’ denotes the dot product.
Given an approximation (8) a linear attack using N plaintexts and the N

corresponding ciphertexts goes as follows.

Linear attack [49]
1. For all plaintexts, P , and ciphertexts, C, let T be the number of times the

left hand side of (8) is zero.
2. If T > N/2 guess that K · γ = 0, otherwise guess that K · γ = 1.

The attack finds one bit of information about the key, K · γ, and the complexity
of a successful attack, i.e., the number of known plaintexts needed, using the
above algorithm can be approximated in the following way. Let T be a binomial
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random variable taking on the value 0 with probability p. Assume that |p− 1/2|
is small and without loss of generality that p > 1/2. Then

Pr(T > N/2) = Φ(2
√

N |p− 1/2|),
where Φ is the normal distribution function. With N = |p− 1/2|−2 the success
rate is about 97.72%. Since the required number of plaintexts is the dominating
factor in a linear attack, the complexity, NP , of the above linear attack is [49]

NP ' |pL − 1/2|−2

where pL is the probability of a linear approximation of the form (8). This esti-
mate shows that the quantity of interest in a linear attack is |pL − 1/2|−2, the
reciprocal of the square of the bias. For DES-like iterated ciphers linear approxi-
mations of the form (8) can be found by combining linear approximations of each
round in the cipher. As in differential cryptanalysis one can define characteristics
to be used in linear cryptanalysis [49].

The above linear attack is not very efficient, since it finds only one bit of
information about the key. However, there exists an extended linear attack, which
finds more key bits. For the DES the linear approximations used by Matsui affects
at most one S-box per round. Only six key bits affect affect an S-box directly,
so instead of approximating the first and last round one can simply repeat the
attack for all values of the relevant key bits in those two rounds. One gets the
following approximation

(P · α)⊕ (C · β)⊕ (F (PR, K1) · α1)⊕ (F (CR, Kr) · αr) = (K · γ) (9)

where PR, CR are the right halves of the plain- and ciphertexts respectively. K1

and Kr are the key bits affecting the linear approximation in the first and rth
rounds. For all choices of the keys K1 and Kr the approximation (9) can be seen
as an approximation of a cipher of r − 2 rounds, i.e., two rounds shorter than
the original cipher. The attack goes as follows with N available plaintexts.

Extended linear attack [49]
1. For all, say n, values of the two keys, K1 and Kr do:

For all plaintexts, P , and ciphertexts, C, let Ti, i = 1, ..., n, be the number
of times the left hand side of (9) is zero.

2. Let Tmax and Tmin be the maximum and minimum values of the Ti’s for
i = 1, ..., n. If |Tmax − N/2| > |Tmin − N/2| guess that K1 and Kr are the
key values from the computation of Tmax.
If |Tmax − N/2| < |Tmin − N/2| guess that K1 and Kr are the key values
from the computation of Tmin.

In case of the DES it is conjectured and confirmed by computer experiments
[49,50] that the efficiency of (9) decreases, when the values of K1 or Kr are
incorrect values. In [49,50] it is estimated that the complexity of an extended
linear attack on the DES with up to 16 rounds is about

NP ' c× |pL − 1/2|−2
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where c ≤ 8 [50]. Note that the practicality of this extended attack depends also
on how many key bits are needed to count on in the first and last rounds.

In [30] Kaliski and Robshaw showed an improved linear attack using multiple
linear approximations. In [32] Knudsen and Robshaw showed a linear attack
using non-linear approximations in the outer rounds of an iterated cipher. Both
these attacks have not yet been shown to offer a significant improvement in
attacks on the DES compared to Matsui’s linear attack. The attacks seem best
suited for attacks on ciphers with large S-boxes, such as LOKI [9,32].

Similar to the concept of differentials in differential cryptanalysis is the con-
cept of linear hulls in linear cryptanalysis introduced in [60], based on the fol-
lowing generalisation of Parseval’s Theorem. Let X ∈ GF (2)m and K ∈ GF (2)`

be random variables and Y = Y (X, K), Y ∈ GF (2)n, be a random variable
which is a function of X and K.

Theorem 3. If X and K are independent and K is uniformly distributed, then
for all a ∈ GF (2)m, b ∈ GF (2)n and γ ∈ GF (2)`

2−`
∑

k∈GF (2)`

|PX(X · a + Y (X, k) · b = 0)− 1/2 |2 =

2−`
∑

k∈GF (2)`

|PX(X · a + Y (X, k) · b + k · γ = 0)− 1/2 |2 =

∑

c∈GF (2)`

|PX,K(X · a + Y (X, K) · b + K · c = 0)− 1/2 |2

This theorem says that the probability of an approximation (8) does not
depend on the value of γ. Moreover for the probability p of a linear approximation
it holds that |p− 1/2|2 is the sum of |pγ − 1/2|2 for all values of γ.

5.3 Differential-Linear Attack

In [27] Hellman and Langford showed how to combine the techniques of differ-
ential and linear attacks. The attack is a chosen plaintext attack and considers
pairs of plaintexts and ciphertexts, the bits of which are (partly) approximated
by linear approximations. In particular, they illustrated the attack by devising
an attack of the DES reduced to 8 rounds, which on input only 512 chosen plain-
texts finds the secret key. It seems that the attack is not easily extended to more
than 8 rounds of DES [27].

In [1] Aoki and Ohta applied the differential-linear attack to FEAL. The
attack takes a long time, but only 12 chosen plaintexts are needed.

5.4 Interpolation Attack

In [28] Jakobsen and Knudsen introduced a new attack on block ciphers. The
attack is based on the following well-known formula. Let R be a field. Given 2n
elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct. Define
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f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (10)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (10) is known as the Lagrange interpolation formula
(see e.g., [10, page 185]).

In the interpolation attack an attacker constructs polynomials using pairs of
plaintexts and ciphertexts. This is particularly easy if the components in the ci-
pher can be easily expressed as mathematical functions. The idea in the attack is,
that if the constructed polynomials have a small degree, only few plaintexts and
their corresponding ciphertexts are necessary to solve for the (key-dependent)
coefficients of the polynomial, e.g., using Lagrange’s interpolation. To recover
key bits one expresses the ciphertext before the last round as a polynomial of
the plaintext. Subsequently, for every value of (parts of) the last-round key one
decrypts all ciphertexts one round and uses these values in the Lagrange inter-
polation. If a few extra plaintexts and ciphertexts fit into this polynomial, the
correct value of the key is found with a high probability. The attack can be
repeated until only one value of the last-round key is suggested. In an extended
version of the attack meet-in-middle techniques are used to further reduce the de-
grees of the used polynomials [28]. In particular, Jakobsen and Knudsen showed
how to attack ciphers, which are provably secure against differential and linear
attacks.

5.5 Key Schedule Attacks

In this section we consider the key schedules of block ciphers. Much research
on the DES has been focused on the S-boxes, but a weak key schedule can be
exploited in cryptanalytic attacks.

We consider an n-bit block cipher, where EK(·) denotes encryption with the
key K and DK(·) denotes decryption.

Definition 11. A weak key K, is a key for which encryption equals decryption,
i.e., EK(X) = DK(X) for all n-bit texts X.

Definition 12. A pair of semi-weak keys K, K∗, are keys for which encryption
with one keys equals decryption with the other key, i.e., EK(X) = DK∗(X) for
all n-bit texts X or equivalently, DK(X) = EK∗(X) for all n-bit texts X.

It is well-known that there are at least four weak keys and six pairs of semi-weak
keys for the DES. In [11] D. Coppersmith showed that there are exactly 232 fixed
points for the DES used with a weak key.

If there are only a small number of weak keys they pose no problem for
applications of encryption if the used keys are chosen uniformly at random.
However, when block ciphers are used in hash modes where e.g., the key input can
be chosen by the attacker in attempts to find collisions, they play an important
role as demonstrated in [15,65].
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In [13] Daemen showed that there exist a large class of 251 easy-identifiable
keys for IDEA. These keys can be identified using only few plaintexts and ci-
phertexts. Note that IDEA uses 128-bit keys. In [80] Vaudenay showed that for
1 in 215 keys for Blowfish a differential attack is faster than an exhaustive key
search. In [40] Knudsen and Meier showed that there exist a large class of differ-
entially weak keys for RC5 [69], keys for which a specific differential attack has
improved performance.

Related Key Attacks In this section we consider the related key attacks.
There are several variants of this attack depending on how powerful the attacker
is assumed to be.

1. Attacker gets encryptions under one key.
2. Attacker gets encryptions under several keys.

(a) Known relation between keys.
(b) Chosen relation between keys.

Knudsen introduced the method by giving a chosen plaintext attack of the first
kind on LOKI’91 [33], reducing an exhaustive key search by almost a factor of
four. Later Biham improved the attack [4] on LOKI’91, reducing an exhaustive
key search by almost a factor of six, and also introduced the second kind of re-
lated key attacks. Still later Knudsen described a related key attack on SAFER K
[37] and recently, Kelsey, Schneier, and Wagner [31] applied the related key at-
tacks to a wide range of block ciphers.

Note that for the attacks of 2b above we have to omit Assumption 1. It
may be argued that the attacks with a chosen relation between the keys are
unrealistic. The attacker need to get encryptions under several keys, in some
attacks even with chosen plaintexts. However there exist quite realistic settings,
in which an attacker may succeed to obtain such encryptions, as argued in [31].
Also, there exists quite efficient methods to preclude the related key attacks
[31,17].

6 Design of Block Ciphers

In this section we discuss some of the problems involved in the design of a block
cipher.

6.1 Design Principles

Two generally accepted design principles for practical ciphers are the principles
of confusion and diffusion that were suggested by Shannon. In his own words:
“The method of confusion is to make the relation between the simple statistics of
the ciphertext and the simple description of the key a very complex and involved
one”. “In the method of diffusion the statistical structure of the plaintext which
leads to its redundancy is dissipated into long range statistics” [73]. Massey[46]
interprets Shannon’s concepts of confusion and diffusion as follows
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Confusion
The ciphertext statistics should depend on the plaintext statistics in a
manner too complicated to be exploited by the cryptanalyst.

Diffusion
Each digit of the plaintext and each digit of the secret key should influence
many digits of the ciphertext.

Shannon’s design principles are very general and informal. There have been many
suggestions in the past of how to obtain good properties (diffusion/confusion)
for a block cipher, but so far there is no known exact recipe of how to construct
a secure block cipher. A necessary and obvious requirement is that the cipher is
resistant against all known attacks, e.g., differential and linear attacks.

We stress that a cryptographic design principle should not be over valued.
Design principles should be seen as “guidelines” in the construction of ciphers,
evolved from years of experience, and as necessary, but not sufficient require-
ments. There are many examples of this in the history of cryptography. We
already mentioned the example of [28], where a block cipher “provably secure”
against differential and linear attacks was broken by some other means. Also, in
[45] the group properties of a cryptosystem based on permutation groups were
studied. It was claimed that the ability of a system to generate the symmetric
group on the message space is “one of the strongest security conditions that
can be offered”. In [57] an example of a cipher was given, that generates the
symmetric group, but still is a weak cipher vulnerable to a known plaintext
attack.

6.2 Block and Key Size

It is clear from the discussion in Section 4.1 that if either the block or key
size is too small or both, a block cipher is vulnerable to a brute force attack.
These attacks are independent of the internal structure and intrinsic properties
of an algorithm. Most block ciphers, e.g., DES, IDEA, FEAL, LOKI, SAFER,
and SHARK have a block size of 64 bits. For these ciphers the birthday attack
of Theorem 2 require storage/collection of 232 ciphertext blocks for a success
of about one half. This may not seem to be a realistic attack. First of all, it
seems unlikely that a single key is used to process that many ciphertexts, second
storage of 232 ciphertext blocks of each 64 bits will require about 25 Gigabytes
of memory. Still, if an attacker can predict approximately how frequently a key
is changed, he can repeat his attack several times with fewer ciphertext blocks
and get a high probability of success. This should be taken into consideration,
when designing new block ciphers.

The key size of the DES is only 56 bits, which is too short. In [81] a design
of an exhaustive search machine was given, which at the cost of 1 million US$
finds the secret key of the DES in average time 3.5 hours. Most of the newest
block cipher proposals have a larger key, e.g., IDEA [42], SAFER SK-128 [37,47],
SHARK [67], and SQUARE [14] have key sizes of 128 bits. RC5 [69] and Blowfish
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[72] have variable key lengths. In [7] is was estimated that with respect to an
exhaustive key search a key size of at least 90 bits will suffice for the next 20
years.

6.3 Resistance Against Differential Attacks

We consider an r-round iterated block cipher with round function g. Denote by
pg the highest probability of a non-trivial one-round differential achievable by
the cryptanalyst.

pg = max
β

max
α6=0

PrK(∆C1 = β | ∆P = α) (11)

where the probabilities are taken over all possible keys. In the following we will
omit the subscript of the probabilities. The probability of a differential is given
by (5). It is easy to obtain a lower bound of any differential in an r-round iterated
cipher expressed in terms of pg.

Theorem 4 ([35]). Consider an r-round iterated cipher, which has independent
round keys. Any s-round differential, s ≥ 1, has a probability of at most pg, where
pg is the probability of the most likely one-round differential.

For DES-like iterated ciphers, Theorem 4 is trivial, since pg = 1, when the
right halves of a pair of inputs are equal. For DES-like iterated ciphers, these
differentials are called trivial one-round differentials. It is possible to get a lower
bound on all differentials in a DES-like iterated cipher expressed in terms of the
most likely non-trivial one-round differential. Let now pmax denote

pmax = max
β

max
αR 6=0

Pr(∆C1 = β | ∆P = α) (12)

where αR is the right half of α. We assume in the following that pmax < 1.

Theorem 5 ([62]). Consider an r-round iterated DES-like cipher with inde-
pendent round keys. Any s-round differential, s ≥ 4, has a probability of at most
2p2

max.

In the following section it is shown that the round function in an iterated
cipher can be chosen in such a way that the probability of any non-trivial one-
round differential, pmax, is small.

6.4 Resistance Against Linear Attacks

As in differential cryptanalysis it is possible to get a lower bound on all linear
approximations of an iterated cipher expressed in terms of the most likely one-
round approximation. Let p be the probability of a linear approximation. Then
|p−1/2| is called the bias. Recall that the success of a linear attack is proportional
to the reciprocal value of the square of the bias of the used linear approximation.
Matsui showed how to treat differential and linear cryptanalysis in a similar way
[51] by defining q = (2p − 1)2. Let now qmax denote the highest such quantity
for a one-round linear approximation. Then the following result holds.
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f(x) pmax qmax ord(f) Conditions

x2k+1 2s−n 2 s = gcd(k, n)

x2k+1 2s−n s = gcd(k, n), n
s

odd

(x2k+1)−1 21−n 21−n (n + 1)/2 gcd(k, n) = 1, n odd
x−1 21−n 22−n n− 1 n odd
x−1 22−n 22−n n− 1 n even

Table 1. Mappings in GF (2n).

Theorem 6 ([62,51]). Consider an r-round iterated DES-like cipher with in-
dependent round keys. Any s-round linear hull, s ≥ 4, has a reciprocal squared
bias of at most 2q2

max.

In the following we show that there exist functions for which qmax of every
non-trivial one-round linear hull is small.

Let N(f) denote the non-linearity of f , i.e., the smallest of the Hamming
distances of any non-zero linear combination of the output coordinate functions
to the set of all affine functions [59]. For a function f , where f : GF (2n) →
GF (2m) any linear approximation of f is bounded as follows,

qmax ≤ (2
2m−1 −N(f)

2m
)2 = (1− N(f)

2m−1
)2.

Differentially Uniform, Nonlinear Mappings By using the functions stud-
ied in [61,3,58,20] one can obtain round functions in a DES-like cipher such
that pmax and qmax are small. We summarise the results of [61,3,58] in Table 1,
where ord(f) is the order of the coordinate functions of f . Note that squaring in
GF (2n) over GF (2) is a linear function, which means that for any of functions
f(x) = xd in Table 1 it holds for the functions g(x) = (f(x))2

l

= xd2l

that
pf

max = pg
max and qf

max = qg
max. Using these mappings and Theorems 5 and 6 it

is possible to construct block ciphers, for which one can show that every s-round
differential or linear hull has a very low probability.

6.5 Resistance Against Other Attacks

As mentioned earlier one should be careful not to focus too much on the resis-
tance against a limited set of attacks, when constructing new block ciphers. In
some cases other attacks become possible. E.g., for some of the mappings shown
above the output bits are only quadratic functions of the input bits, thereby
enabling higher order differential attacks.

Let E be a n-bit r-round iterated block cipher. Assume that the nonlinear
order of the ciphertext bits after one round is d and ds after s rounds with a high
probability. Then higher order differential attacks will in general not be possible
after r rounds, if dr ' n. One should take into account that the attacker may
be able to guess key bits in the outer rounds of the cipher thereby attacking a
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cipher with a fewer number of rounds. Thus, if the nonlinear order should reach
the block size after, say, r − 2 rounds.

It is yet unknown how to obtain exact security against truncated differential
attacks. However, a truncated differential is a collection of differentials. There-
fore, if the probabilities of all differentials can be sufficiently lower-bounded, this
attack will have only small probability of succeeding.

The differential-linear attack will only work if both good linear hulls and
good differentials exist. Thus, the techniques of the previous section also apply
in this case.

The interpolation attack works particularly well when the outputs of one
round of E can be described as a polynomial of the input bits with relatively
few nonzero coefficients. Thus, if (some elements of) E cannot be described as
such, it seems that the attack will not be possible. But the interpolation attack
is a very new approach and needs further study.

The key-schedule attacks can be precluded by using only so-called strong
key-schedules [36], see also [31,17].

7 Cascade Ciphers

In this section, we look at methods for enhancing cryptosystems based on the
idea of encrypting plaintext blocks more than once. In a cascade of ciphers it is
assumed that the keys of the component ciphers are independent. The following
result was proved by Even and Goldreich.

Theorem 7 ([22]). A cascade of ciphers is at least as hard to break as any of
the component ciphers in attacks where an attacker cannot make use of plaintext
statistics.

As seen, the result establishes a connection between the security of a cascade of
ciphers and of the underlying ciphers. The following result covering all attacks
was proved by Maurer and Massey.

Theorem 8 ([53]). Under any attack, a cascade of ciphers is at least as hard
to break as the first cipher.

The two results hold for any reasonable definition of breaking a cipher [22,53],
e.g., they hold for key-recovery attacks as well as for attacks that find a plaintext
given a ciphertext.

7.1 Multiple Encryption

A special case of a cascade of ciphers is when the component ciphers are equal,
also called multiple encryption. In the following we consider different forms of
multiple encryption. In the following let X the underlying encryption scheme,
and let EK and DK denote encryption and decryption respectively, in X under
key K. We assume that the key space of X consists of all k-bit strings and that
the block length of X is m.
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Double Encryption The simplest idea one could think of would be to encrypt
twice using two keys K1, K2, i.e., let the ciphertext corresponding to P be C =
EK2(EK1(P )). It is clear (and well-known), however, that no matter how K1, K2

are generated, there is a simple meet-in-the middle attack that breaks this system
in a known plaintext attack using 2k encryptions and 2k blocks of memory, i.e.,
the same time complexity as key search in the original system. The memory
requirements can be reduced significantly by using the methods of Wiener and
van Oorschot [79], and it is clear that this is not a satisfactory improvement over
X .

Triple Encryption Triple encryption with three independent keys K1, K2,
and K3, where the ciphertext corresponding to P is C = EK3(EK2(EK1(P ))), is
also not a satisfactory solution for a similar reason as for double encryption. A
simple meet-in-the-middle attack will break this in time about 22k encryptions
and space 2k blocks of memory. Thus we do not get full return for our effort in
tripling the key length. We would like attacks to take time close to 23k, if the key
length is 3k. In addition to this, if X = DES, then a simple triple encryption
would preserve the complementation property, and preserve the existence of weak
keys. Recently, it was shown that if an attacker can mount a related key attack,
triple encryption can be broken in time about 2k [31]. The attack requires that
the attacker can get the encryptions of a small number of known plaintexts under
two sets of keys. The two triples of keys must differ only in the third keys with
a difference known to the attacker.

It is clear, however, that no matter how the three keys in triple encryption are
generated, the meet-in-the-middle attack mentioned is still possible, and so the
time complexity of the best attack against any triple encryption variant is not
larger than 22k. It therefore seems reasonable to try to generate the three keys
from two independent X -keys K1, K2, since triple encryption will not provide
security equivalent to more than 2 keys anyway.

Two-Key Triple Encryption One variant of this idea is well-known as two-
key triple encryption, proposed by W. Tuchmann [77]: we let the ciphertext
corresponding to P be EK1(DK2(EK1(P ))). Compatibility with a single encryp-
tion can be obtained by setting K1 = K2. As one can see, this scheme uses a
particular, very simple way of generating the three keys from K1, K2.

Theorem 9 ([17]). In attacks where an attacker cannot make use of plaintext
statistics two-key triple encryption is at least as hard to break as it is to break a
cryptosystem that uses a single decryption function of the underlying block cipher
for encryption.

Even though this result establishes some connection between the security of two-
key triple encryption with the underlying cipher, it does not (seem to) hold for
any attacks.

It is interesting to note that the related-key attack on a triple encryption
scheme is not applicable to two-key triple encryption [31]. However each of K1
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and K2 influences only particular parts of the encryption process. Because of this,
variants of the meet-in-the-middle attack are possible that are even faster than
exhaustive search for K1, K2. In [55] Merkle and Hellman describes an attack
on two-key triple DES encryption requiring 256 chosen plaintext-ciphertext pairs
and a running time of 256 encryptions using 256 words of memory. This attack
was refined in [78] into a known plaintext attack on the DES, which on input n
plaintext-ciphertext pairs finds the secret key in time 2120/n using n words of
memory. The attacks can be applied to any block cipher.

In [17] stronger methods for generating the keys is given. The main idea is
to generate them pseudorandomly from 2 X keys using a generator based on the
security of X . In this way, an enemy trying to break Y either has to treat the
3 keys as if they were really random which means he has to break X , according
to Theorem 8; or he has to use the dependency between the keys — this mean
breaking the generator which was also based on X . As a concrete example the
3-PEK scheme (for triple encryption with pseudorandomly expanded keys) was
proposed. As before, the key length of X is k and the block length is m. First,
the three keys X1, X2, X3 are generated:

X1 = EK1(EK2(IV1))
X2 = EK1(EK2(IV2))
X3 = EK1(EK2(IV3))

where IVi are three different initial values, e.g. IVi = C + i, where C is a con-
stant. Subsequently, the three keys Xi are used as keys for triple encryption.
It is shown in [17] that if X is secure then so is Y and at the same time, the
meet-in-the-middle attacks of [55,78] and the related key attack on triple en-
cryption [31] are not possible. Using DES as the underlying cipher, 3-PEK has
the additional advantage to other schemes, that there are no weak keys and that
the complementation property does not hold.

8 Conclusion

This paper surveyed the state of the art of cryptanalysis of block ciphers. Since
1990 there has been a huge increase of public knowledge regarding the security of
secret key block ciphers, most notably through the publication of the differential
and linear attacks. Today we know how to break many systems faster than by
an exhaustive search for the key. Still the best known attacks on many systems
are not very practical and require either the encryptions of unrealisticly many
chosen or known plaintexts and/or a huge memory and processing time.
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