
A Tool Box of Cryptographic Functions
Related to the Diffie-Hellman Function

Eike Kiltz

Lehrstuhl Mathematik & Informatik,
Fakultät für Mathematik, Ruhr-Universität Bochum,

44780 Bochum, Germany,
kiltz@lmi.ruhr-uni-bochum.de,

http://www.ruhr-uni-bochum.de/lmi/kiltz/

Abstract. Given a cyclic group G and a generator g, the Diffie-Hellman
function (DH) maps two group elements (ga, gb) to gab. For many groups
G this function is assumed to be hard to compute. We generalize this
function to the P -Diffie-Hellman function (P -DH) that maps two group
elements (ga, gb) to gP (a,b) for a (non-linear) polynomial P in a and b. In
this paper we show that computing DH is computationally equivalent to
computing P -DH. In addition we study the corresponding decision prob-
lem. In sharp contrast to the computational case the decision problems
for DH and P -DH can be shown to be not generically equivalent for most
polynomials P . Furthermore we show that there is no generic algorithm
that computes or decides the P -DH function in polynomial time.

1 Introduction

Let G be a cyclic finite group and let g be a generator of G. The Diffie-Hellman
function, DH : G×G → G is given by DH(ga, gb) = gab. This function is used, for
instance, in the Diffie-Hellman cryptosystem [3]. Here two parties, say Alice and
Bob, agree on a common pair (G, g), a is the private key of Alice, b is the private
key of Bob, ga is sent from Alice to Bob, gb is sent vice-versa, and finally both
of them are able to compute gab. The Computational Diffie-Hellman assumption
claims that the function DH is hard to evaluate.

In this work we are generalizing the Diffie-Hellman function in the follow-
ing way. Let P (a, b) be a function in a and b. We define the P -Diffie-Hellman
function, P -DH: G×G → G as

P -DH(ga, gb) := gP (a,b).

Clearly, the Diffie-Hellman function is achieved by setting P (a, b) = ab. We will
restrict our studies to the case where P is a non-linear polynomial in a and b.

The function that computes g(a
2) from ga is called the Square Exponent func-

tion. A motivation for the analysis of this variant of the Diffie-Hellman function is
that certain cryptographic systems exist whose security relies on the hardness of
this function. An example is a scheme for key escrow with limited time span [1].

C. Pandu Rangan, C. Ding (Eds.): INDOCRYPT 2001, LNCS 2247, pp. 339–349, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

340 E. Kiltz

Maurer and Wolf [5] prove the equivalence of computing the Diffie-Hellman func-
tion and computing the Square Exponent function. Further theoretical research
about the Square Exponent function was done [2,8].

Clearly computing the P -DH function cannot be harder than computing the
DH function for a polynomial P (a, b). In Section 3 we also show the converse
direction, i.e. that computing the Diffie-Hellman function is computational equiv-
alent to computing the P -DH function for non-linear polynomials P (a, b). As we
will see, the strength of our result will depend on the smallest prime factor of
the group order. In Section 4 we study the corresponding decision problem: For
random group elements ga, gb and (in random order) gc and gP (a,b) decide be-
tween gc and gP (a,b). In sharp contrast to the results in Section 3 we show that
the decision problem for the Diffie-Hellman function and the P -Diffie-Hellman
function are provably not generically equivalent for most polynomials P (a, b).
On the other hand we show that no efficient generic algorithm can decide the
P -Diffie-Hellman function. Finally, in Section 5 we mention some open problems.

2 Definitions

We say that an algorithm is efficient if it runs in probabilistic polynomial time.
We call a function α negligible in n if α(n) < 1/P (n) holds for every polynomial
P and for sufficiently large n.

P -Diffie-Hellman function. Let G be a finite cyclic group whose order |G| is
an n-bit integer. Let Z|G| denote the ring of integer residue classes modulo |G|.
Let k = k(n) and l = l(n) be two functions mapping integers to integers. Let
Pk

l = Pk
l (n) be the family of sets of all non-linear polynomials P (a, b) over Z|G|

of the form P (a, b) =
∑

i,j∈{0...l} cija
ibj with coefficients cij ∈ Z|G| and absolute

values |cij | bounded by k. We restrict the polynomials P (a, b) to non-linear
polynomials, i.e. at least for one (i, j) with i + j ≥ 2, cij �= 0 must hold. To
simplify our notation we introduce Pl := P�|G|/2�

l (no restrictions to coefficients)
and P := P|G|−1.
For a cyclic, finite group G, a fixed generator g of G and a polynomial P ∈ P
we define the P -Diffie-Hellman function, P -DH: G×G → G as

P -DH(ga, gb) := gP (a,b),

where P is called the defining polynomial of the P -Diffie-Hellman function.

Examples of the P -DH function are:

Name Defining polynomial P -Diffie-Hellman function
Diffie-Hellman function [3] P (a, b) = ab DH(ga, gb) = gab

Square Exponent function [5] P (a, b) = a2 SE(ga) = g(a2)

To-the-s Diffie-Hellman function P (a, b) = as DHs(ga) = g(as)

- P (a, b) = a2b+ ab2 P -DH(ga, gb) = ga2b+ab2

Cryptographic Functions Related to the Diffie-Hellman Function 341

Considered Group Families. Let G := (Gn, gn)n∈N be a family of finite cyclic
groups and generators. We define G as the set of all families G, where the
bitlength of the (efficiently computable) group order |Gn| is of the order n. We
define G(nsprime) := {G : ∀polynomials R ∃n0∀n ≥ n0 : minpf(|Gn|) > R(n)}
as the set of all families G such that the minimal prime factor of the group order
|Gn| is larger than any polynomial (nsprime stands for “no small prime factor”).

Computational Assumptions. Let (G, g) = (Gn, gn)n∈N = G be a family of
groups and generators and let ε(n) be a function in n taking values in the interval
[0, 1]. For P ∈ P the ε(n)-P Computational Diffie-Hellman assumption for G
(ε(n)-P -CDH(G)) is: There is no efficient algorithm that, given random group
elements ga and gb, outputs gP (a,b) with probability at least ε(n) (taken over the
uniformly distributed input and coin tosses of the algorithm).

We define ε(n)-CDH(G) as the assumption ε(n)-P -CDH(G) for P (a, b) := ab
and ε(n)-CSE(G) as the assumption ε(n)-Q-CDH(G) for Q(a, b) := a2.

The assumption that for all polynomials R there is no efficient algorithm
that, given ga and gb, outputs gP (a,b) with (asymptotical) probability at least
1/R(n) is denoted as 1

poly(n) -P -CDH(G). Vice-versa, the assumption, that there
is no efficient algorithm that, given ga and gb, outputs gP (a,b) with probability
1 − α(n), where α(n) is a negligible function in n, is denoted as P -CDH(G).

We say that assumption ε(n)-P -CDH holds, if ε(n)-P -CDH(G) holds for every
family G ∈ G. We say that ε(n)-P -CDHnsprime holds, if ε(n)-P -CDH(G) holds
for every family G ∈ G(nsprime).

Relations. To express relations among assumptions we will use the following
notation: A ⇒ B means that if assumption A holds, so does assumption B. Vice-
versa, it also means that if there is a efficient algorithm AB breaking assumption
B then we can build another efficient algorithm AAB

A with (oracle) access to AB

which breaks assumption A.

Generic Algorithms (Notation of Shoup [7]). An encoding function on the ad-
ditive group (Zm,+) is an unknown injective map σ : Zm → {0, 1}n for some
integer n. For a generic algorithm nothing is known about the structure (rep-
resentation) of the underlying algebraic group. More precisely a generic algo-
rithm A for Zm is a probabilistic algorithm that takes as input an encoding
list (σ(x1), . . . , σ(xk)) where σ is an encoding function. Operations can only
be performed via addition and subtraction oracles which given two indices i, j,
return the encoding of σ(xi + xj) and σ(xi − xj) respectively. The new encod-
ing is then added to the encoding list. The output of the algorithm is denoted
by A(σ;x1, . . . , xk). An example of a generic algorithm is the Pohlig-Hellman
algorithm that computes the discrete logarithm.

Relations between assumptions that make only use of generic reduction al-
gorithms are marked by the appearance of σ. For instance, A σ

� B means that
no efficient reduction is possible when computation is restricted to generic al-
gorithms. And true σ⇒ B means that there is no efficient generic algorithm can

342 E. Kiltz

break assumption B. Note that such “impossibility statements” for generic al-
gorithms are very weak, because problems might get substantially easier when
adding an encoding to the group G.

3 The Computational Case

3.1 Previous Work

Theorem 1. 1. true σ⇒ 1
poly(n) -CDHnsprime (Shoup [7]).

2. true σ⇒ 1
poly(n) -CSEnsprime (Wolf [9]).

3. 1
poly(n) -CDH ⇔ CDH (Shoup’s Diffie-Hellman self-corrector [7]).

4. 1
poly(n) -CDH ⇔ 1

poly(n) -CSE (Maurer and Wolf [5]) .

3.2 This Work

The following two main theorems of this section state the equivalence of the two
assumptions P -CDH and Q-CDH for two defining polynomials P and Q. Note
that the size of the smallest prime factor of the group order turns the balance
of the strength of the two theorems.

Theorem 2. For every constant l and for every P,Q ∈ Pl we have:
1

poly(n) -P -CDHnsprime ⇔ 1
poly(n) -Q-CDHnsprime.

Theorem 3. For l ∈ O(
√

log n) and for every P,Q ∈ Ppoly(n)
l we have:

P -CDH ⇔ Q-CDH.

No generic algorithm can efficiently break the assumption 1
poly(n) -P -CDHnsprime:

Theorem 4. For every P ∈ Ppoly(n) we have: true
σ⇒ 1

poly(n) -P -CDHnsprime.

The proof of Theorem 4 uses techniques due to Shoup [7] and can be found in
the full version of this paper [4].

Theorem 5 (P -DH self-corrector). For every constant l and every P ∈ Pl

we have: 1
poly(n) -P -CDH ⇔ P -CDH.

3.3 Proofs

Computing Roots in G will be an important building stone for the proofs of our
theorems. We will shortly summarize some known theoretical results from [9].
For a finite cyclic group G of known order |G| let d ∈ Z|G| and x, a ∈ G. Then
the equation

xd = a

Cryptographic Functions Related to the Diffie-Hellman Function 343

has exactly s := gcd(|G|, d) different solutions x1, . . . , xs (there must be at least
one, x). They are called d-th roots of a and can be computed by a probabilistic
algorithm in expected O(sn3) bit operations. In fact, for this algorithm to work
one has to know which prime factors are shared by d and |G|. But in our appli-
cation d is always small enough to compute this relation. Therefore a complete
factorization of |G| is not needed, only |G| must be known. The proof of the
following simple lemma can be found in the full version [4]:

Lemma 1. For (G, g) = (Gn, gn)n∈N ∈ G(nsprime) let d ∈ Z|G| and x, a ∈ G be
random elements. Then the equation xd = a has with overwhelming probability
a unique solution x.

The following central lemma says that once we are given an algorithm that
computes DH with non-negligible probability of success, then we can compute P -
DH with overwhelming probability of success for any polynomial P (a, b). Recall
that, for instance, P -CDH is the assumption that there is no efficient algorithm
that computes the P -Diffie-Hellman function.

Lemma 2. For every P ∈ Ppoly(n) we have: P -CDH ⇒ 1
poly(n) -CDH.

Proof. Fix the family (G, g) = (Gn, gn)n∈N ∈ G. Assume 1
poly(n) -CDH is wrong,

i.e. there is an oracle that computes DH with non-negligible probobility of suc-
cess. Use the Diffie-Hellman self-corrector of Theorem 1 (3) to get an algorithm
that computes DH with overwhelming probability of success. With this reliable
algorithm for DH at hand, given ga and gb, any monomial gcijaibj

can be com-
puted by repeated multiplication or squaring in the exponent. Hence, P -DH can
be constructed “monomial-by-monomial” (there are at most polynomial many)
by addition in the exponent. This brakes assumption P -CDH. ��
With this observation at hand the proof of Theorem 5 (P -DH self-corrector) is
easy. Clearly “⇒” holds. To prove “⇐” we “detour” over DH. This will be a
very frequently used strategy in our proofs. Let P ∈ Pl and let an oracle OP−DH
be given that computes P -DH with non-negligible probability of success. Due
to Theorem 2 we can construct an algorithm AOP −DH that computes DH with
non-negligible probability of success. Now apply Lemma 2.

Proof Outline of Theorem 2 and Theorem 3: Due to Lemma 2 in both cases it
is sufficient to show that given an algorithm that computes P -DH for a P ∈ Pl

then there is an algorithm that computes DH. Lemma 3 deals with the special
case P ∈ P2. It can be viewed as the induction base. In Lemma 4 computing
P -DH for a P ∈ Pl is reduced through an efficient algorithm to computing Q-DH
for a Q ∈ Pl−1. This lemma can be viewed as the induction step which is then
applied recursively l− 2 times. As we will see we have to take care of a blow-up
of the coefficients of the polynomial Q in the induction step.

Lemma 3. 1. For P ∈ Ppoly(n)
2 we have: P -CDH ⇐ CDH.

2. For P ∈ P2 we have: 1
poly(n) -P -CDHnsprime ⇐ 1

poly(n) -CDHnsprime.

344 E. Kiltz

Proof. We first prove part 1 of the lemma. Let P ∈ Ppoly(n)
2 . Because of Lemma 2

it is sufficient to show P -CDH ⇐ 1
poly(n) -CDH. Let (G, g) = (Gn, gn)n∈N ∈ G.

Let OP -DH be an oracle that computes P -DH, i.e. given ga, gb, OP -DH outputs

gP (a,b) = gc20a2+c21a2b+c22a2b2+c10a+c11ab+c12ab2+c00+c01b+c02b2 .

We want to design an algorithm AOP-DH that computes DH with non-negligible
probability of success. The main idea of the proof is to “eliminate” any appear-
ance of aib2 and a2bj in the exponent for every 0 ≤ i, j ≤ 2 by the multiplicative
combination of calls to OP -DH. For this, AOP-DH queries the oracle for Y+ =
OP -DH(ga+b, g) = P -DH(ga+b, g) and Y− = OP -DH(ga−b, g) = P -DH(ga−b, g).
Division of the two outputs yields C = Y+ · (Y−)−1 = g4c2·ab+2c1·b where all
ci :=

∑2
j=0 cij are known. First assume c2 �= 0. Now g4c2·ab = C · (gb)−2c1 can

be computed. Assume 4c2 is positive, otherwise invert. Now compute all 4c2-th
roots of g4ab·c2 (there are s := gcd(4c2, |G|)), i.e. all solutions of the equation

x4c2 = g4ab·c2 , (1)

with x = gab. This can be done in time O(sn3) = poly(n), because for all
coefficients, cij = poly(n) holds. Now output one of the roots of equation (1)
at random, one of them is the correct one, gab. Hence, for the case c2 �= 0 the
success probability of the AOP-DH is ε(n) ≥ 1/s ≥ 1/(4c2) = 1/poly(n).
In the case c2 = 0 we query the oracle for P -DH(ga±b, g2) or P -DH(ga±b, g3).
As shown in the full paper [4] at least one of those queries leads to a successful
computation of gab. This completes the proof of part 1.

Now let (G, g) = (Gn, gn)n∈N ∈ G(nsprime) and let P ∈ P2. We show
part 2 of the lemma. Let OP -DH be an oracle that outputs P -DH with success
probability at least ε(n) = 1/poly(n). First the algorithm queries the oracle for
Y+ = OP -DH(ga+b+s, gu) and Y− = OP -DH(ga−b+t, gv) for random and known
values s, t, u, v. Note that the queries are random and independent. Therefore
the probability that both calls give the correct answer is at least ε2(n). Assume
this is the case, thus Y+ = P -DH(ga+b+s, gu) and Y− = P -DH(ga−b+t, gv). Now
the key observation is that because the minimal prime factor of G is not too
small, every coefficient in the exponent has an unique inverse with overwhelming
probability (Lemma 1). In this case the inverse is efficiently computable. From

Y+ = gc2(a+b+s)2+c1(a+b+s)+c0 = gc2(a+b)2+2c2(a+b)s+c2s2+c1(a+b+s)+c0

for ci =
∑2

j=0 ciju
j a simple computation gives us g(a+b)2 . For the same reason

we get g(a−b)2 from Y−. Again by division g2ab can be computed and hence
gab. We have constructed an algorithm AOP-DH that computes gab with success
probability of at least ε2(n) = 1/poly(n). ��
The next lemma is the “induction step” to proof Theorems 3 and 2.

Lemma 4. 1. For a P ∈ Pk
l let OP -DH be an oracle that breaks P -CDH. Then

for k′ := 2kl2l there is a Q ∈ Pk′
l−1 and an efficient algorithm AOP-DH that

breaks Q-CDH making at most 3 queries to OP -DH.

Cryptographic Functions Related to the Diffie-Hellman Function 345

2. For a function ε > 0 and for a P ∈ Pl let OP -DH be an oracle that breaks
ε(n)-P -CDHnsprime. Then there is a Q ∈ Pl−1 and an efficient algorithm
AOP-DH that breaks ε3(n)-Q-CDHnsprime making at most 3 queries to OP -DH.

Proof. We start proving the first part of this lemma. Let P ∈ Pk
l and let (G, g) =

(Gn, gn)n∈N ∈ G. The main idea of this proof again is to eliminate any appear-
ance of galbj

or gaibl

for any i, j by computing P -DH(ga+b, g)·(P -DH(ga−b, g))−1.

Case 1: l even. Making two queries to the oracle OP -DH, algorithm AOP-DH gets

Y+ = P -DH(ga+b, g) = gcl(a+b)l+cl−1(a+b)l−1+···+c0(a+b)

and Y− = P -DH(ga−b, g) = gcl(a−b)l+cl−1(a−b)l−1+···+c0(a−b),

where ci :=
∑l

j=1 cij . Now assume cl �= 0. cl might be 0, but in this case continue
with the same trick as in the proof of Lemma 3 (1). Because l is even division
leads to gQ(a,b) = Y+ · (Y−)−1 where

gQ(a,b) = gcl((a+b)l−(a−b)l)+cl−1((a+b)l−1−(a−b)l−1)+
∑l−2

i=0 ci((a+b)i−(a−b)i))

= g2cl((l
l−1)al−1b+(l

l−3)al−3b3+···+(l
1)abl−1)+2cl−1((l−1

l−2)al−2b+···+bl−1)+···.

Each coefficient of aibj of this polynomial Q(a, b) is either 0 (if j is even) or
2ci+j

(
i+j

i

) ≤ 2kl
(

l
l/2

) ≤ 2kl2l =: k′ (if j is odd). Note that the coefficients of

the monomials al and bl are always 0. Thus Q(a, b) ∈ Pk′
l−1. Algorithm AOP-DH

outputs gQ(a,b) = Q-DH(ga, gb).

Case 2: l odd. With three queries to the oracle OP -DH, algorithm AOP-DH gets

gQ(a,b) = P -DH(ga+b, g) · P -DH(ga−b, g)−1 · P -DH(gb, g)−1

where Q(a, b) = 2cllal−1b − 2cl−1b
l−1 + · · · . A similar computation as in the

even case shows that Q(a, b) ∈ Pk′
l−1 with k′ defined as above. Algorithm AOP-DH

outputs gQ(a,b) = Q-DH(ga, gb). This completes the proof of the first part.
The proof of the second part of the lemma can be found in [4]. ��

Now we are ready to give the proof of Theorem 3.

Proof (of Theorem 3). Let (G, g) = (Gn, gn)n∈N ∈ G. For l ∈ O(
√

log n) and
k ∈ poly(n) let P ∈ Pk

l . Due to Lemma 2 it is sufficient to show P -CDH ⇐
CDH. Let OP -DH be an oracle that computes P -DH. Now apply (l − 2)-times
Lemma 4 (1) recursively to get a polynomialQ and an efficient algorithm AOP-DH

that computes Q-DH. Q ∈ Pf(k,l)
2 , where f(k, l) = k · ∏i=2...l i2

i ≤ k · l!2 (l+1)l
2 =

poly(n) · poly(n) = poly(n). The number of queries to OP -DH is at most 3l−2 =
poly(n). Now use Lemma 3 (1) to construct an efficient algorithm BOP-DH that
computes DH(ga, gb) with overwhelming probability of success. ��
The proof of Theorem 2 is similar and can be found in the full paper [4].

346 E. Kiltz

4 The Decisional Case

Let G = (Gn, gn)n∈N = (G, g) be a family of groups and generators and let
ε(n) be a function in n. Then the ε(n)-P -Decision Diffie-Hellman assumption
for G (ε(n)-P -DDH(G) is: There is no efficient algorithm A that, given random
group elements ga, gb and (in random order) gP (a,b) and another random group
element gc, identifies gP (a,b) with probability 1/2 + ε(n) (taken over the input
and coin tosses of A). Let ε(n)-P -DDHnsprime, ε(n)-P -DDHnsprime, ε(n)-P -DDH
as well as the Decision Square Exponent assumption ε(n)-DSE and the Decision
Diffie-Hellman assumption ε(n)-DDH be defined as in the computational case.

4.1 Previous Work

Theorem 6. 1. true σ⇒ 1
poly(n) -DDHnsprime (Shoup [7]).

2. true σ⇒ 1
poly(n) -DSEnsprime (Wolf [9]).

3. 1
poly(n) -DDH σ

�
1

poly(n) -DSEnsprime (Wolf [9]).
4. 1

poly(n) -DDH ⇐ 1
poly(n) -DSE (Wolf [9]).

4.2 This Work

We define the set of polynomials P2∗ for which the reduction from P -DDH to
DDH is possible. Let P2∗ ⊂ P2 be the set of polynomials P (a, b) given by

P (a, b) = (d00a+ d01b)(d10a+ d11b) + c10a+ c01b+ c00, cij , dij ∈ Z|G|.

Example polynomials of P2∗ include P (a, b) = a2 − b2 and P (a, b) = (a+ b)2.
We characterize the relation between the assumptions 1

poly(n) -DDH and
1

poly(n) -P -DDH in the following two theorems. Remember that P1 is the set
of polynomials P (a, b) = c11ab+ c01a+ c10b+ c00 satisfying c11 �= 0.

Theorem 7. For every P ∈ Ppoly(n) \ P2∗ and Q ∈ P2∗ we have:

1. 1
poly(n) -DDHnsprime

σ
�

1
poly(n) -P -DDHnsprime.

2. 1
poly(n) -DDH ⇐ 1

poly(n) -Q-DDH.

Theorem 8. For every P ∈ Ppoly(n) \ P1 we have:

1
poly(n) -DDHnsprime

σ
�

1
poly(n) -P -DDHnsprime.

The proof of Theorem 8 uses techniques due to Shoup [7] and can be found in
the full paper [4]. The next theorem is a direct corollary of Theorem 7 (1).

Theorem 9. For every P ∈ Ppoly(n) we have: true
σ⇒ 1

poly(n) -P -DDHnsprime.

Cryptographic Functions Related to the Diffie-Hellman Function 347

4.3 Proofs

The following lemma gives an alternative characterization of P2∗ .

Lemma 5. 1. If P (a, b) ∈ P2∗ then there are non-trivial linear combinations
R,S and T of 1, a, b and P (a, b) over Z|G| that satisfy the relation

∀a, b : R(1, a, b, P (a, b)) · S(1, a, b, P (a, b)) = T (1, a, b, P (a, b)). (2)

2. Let (G, g) ∈ G(nsprime) and let P ∈ Ppoly(n). If relation (2) is satisfied,
then P ∈ P2∗ holds with overwhelming probability (over the choices of P).

Proof. Let R(a, b) = r0+r1a+r2b+r3P (a, b), S(a, b) = s0+s1a+s2b+s3P (a, b)
and T (a, b) = t0 + t1a+ t2b+ t3P (a, b). Relation (2) can only hold for all a, b if
r3 = s3 = 0. Thus, viewed as polynomials over a and b, relation (2) is satisfied
iff (r1a+ r2b) · (s1a+ s2b) = u0 + u1a+ u2b+ t3P (a, b), where u0 := t0 − r0s0,
u1 := t1 − r0s1 − r1s0 and u2 := t2 − r0s2 − r2s0. Consequently, for any P (a, b) ∈
P∗
2, relation (2) can be satisfied (setting t3 = 1). Now let (G, g) ∈ G(nsprime)

and relation (2) be satisfied. Due to Lemma 1, t3 is invertible in Z|G| with
overwhelming probability. In this case obviously P ∈ P2∗ holds. ��
The next lemma proves Theorem 7 (2).

Lemma 6. Let P ∈ P2∗ and let ODDH be an oracle that breaks ε(n)-DDH. Then
there is an efficient algorithm AODDH that breaks ε(n)-P -DDH.

Proof. We construct AODDH as follows: Let ga, gb and in random order gP (a,b)

and gc be given. Since P ∈ P2∗ we can compute gR(a,b), gS(a,b) and gT (a,b) with
R,S, T satisfying relation (2) of Lemma 5 (1). gT (a,b) is computed twice, first
with gP (a,b), second with gc in the role of gP (a,b). Lets denote them as gT1

and gT2 . Now feed ODDH with the input (gR, gS , gT1 , gT2) which immediately
identifies which one, gT1 or gT2 , has been computed from gP (a,b). Note that we
called ODDH only once, thus the success probability of algorithm AODDH is ε(n).

��
The next lemma says that for P ∈ Ppoly\P2∗ every generic algorithm that breaks
ε(n)-P -DDHnsprime for a non-negligible ε(n) needs at least super-polynomial
time. It proves Theorem 7 (1). The proof uses techniques due to Shoup [7].

Lemma 7. Let m = m(n) be a family of integers whose smallest prime factors
p = p(n) are (asymptotically) lower bounded by a polynomial R(n). Let S ⊂
{0, 1}∗ be a set of at least m binary strings. Let P ∈ Pl \ P2∗ . Let A = A(n) be
generic algorithms that work for groups of orderm, run in time at most T = T (n)
and make calls to a (perfect) DDH-oracle. Let a, b, c ∈ Zm be chosen at random,
let σ : Zm → S be a random encoding function, and let t be a random bit. Set
w0 = P (a, b) and w1 = c. Then Pr[A(σ; 1, a, b, wt, w1−t) = t] ≤ 1/2 +O(lT 2/p).

Proof (Sketch). The proof follows two ideas. First, if the algorithm has a slight
chance to decide P -DH only by making computations in the group, then this

348 E. Kiltz

happens by an “accident” that is not very likely to happen. And second, the
algorithm has no chance to get a single bit of information from the DDH-oracle,
i.e. the probability that it gets a non-trivial answer from it is very small (here
Lemma 5 (2) comes to application). Hence, the oracle is useless. See the full
version [4] for a formal treatment of the proof. ��

5 Conclusions and Open Problems

We presented a theoretical approach of a generalization of the Diffie-Hellman
function. This P -Diffie-Hellman function is provably computationally equivalent
to the Diffie-Hellman function for a certain class of groups. As the title of this
paper suggests this set of functions should be viewed as a tool box. The same
way the Square Exponent function was introduced as a theoretical concept first
and later exploited in a cryptographic setting, we hope that one will find a useful
application in some cryptographic protocols or maybe one can use it to simplify
some proofs in the context of the Diffie-Hellman function.

Note that the P -DH function can replace the DH function in some applica-
tions. For instance the to-the-s Diffie-Hellman function introduced in Section 1
can be used in protocols like the scheme for key escrow with limited time span [1].

Open Problems: As mentioned above it would be nice to have some more “real-
world” applications of the P -Diffie-Hellman function.

The results in the computational case leave a lot of room for improvement.
It would be interesting to see if one can improve our results to show that

1
poly(n) -CDH ⇔ 1

poly(n) -P -CDH holds for P∈Ppoly(n). In [6] the Inverse Exponent

function IE(ga) = g(a
−1) is proven to be computationally equivalent to the DH

function. Consequently one might ask the question what kind of functions f (oth-
ers than polynomials) lead to f -Diffie-Hellman functions f -DH(ga, gb) = gf(a,b)

that are computationally equivalent to the DH function. Also, a generalization
of the defining polynomial P (a, b) to P (a1, · · · , ak) is possible.

Acknowledgment

Thanks to Jürgen Forster for great help on this paper as well to Andreas Bomke,
Dario Catalano, Ahmad-Reza Sadeghi, Hans-Ulrich Simon and Michael Steiner.

References

1. M. Burmester, Y. Desmedt, and J. Seberry. Equitable key escrow with limited
time span (or, how to enforce time expiration cryptographically). In Advances in
Cryptology – ASIACRYPT ’ 98, pages 380–391, 1998.

2. D. Coppersmith and I. Shparlinski. On polynomial approximation of the Discrete
Logarithm and the Diffie-Hellman mapping. Journal of Cryptology, 13(3):339–360,
March 2000.

Cryptographic Functions Related to the Diffie-Hellman Function 349

3. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
information Theory, 22(6):644–654, 1976.

4. E. Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman Func-
tion (full version). Manuscript, 2001.

5. U. Maurer and S. Wolf. Diffie-Hellman oracles. Proc. of CRYPTO’96. Lecture Notes
in Computer Science, 1109:268–282, 1996.

6. A.-R. Sadeghi and M. Steiner. Assumptions related to discrete logarithms: Why
subtleties make a real difference. In Advances in Cryptology – EUROCRYPT ’01,
pages 243–260, 2001.

7. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology – EUROCRYPT ’97, pages 256–266, 1997.

8. I. Shparlinski. Security of most significant bits of gx2
. Inf. Proc. Letters, (to appear).

9. Stefan Wolf. Information-theoretically and Computionally Secure Key Agreement in
Cryptography. PhD thesis, ETH Zürich, 1999.

	1 Introduction
	2 Definitions
	3 The Computational Case
	3.1 Previous Work
	3.2 This Work
	3.3 Proofs

	4 The Decisional Case
	4.1 Previous Work
	4.2 This Work
	4.3 Proofs

	5 Conclusions and Open Problems
	Acknowledgment
	References

