
SESSION ID:

Writing Secure Software is hard, but at least
add mitigations!

ASEC-F02

Simon Roses Femerling
CEO

VULNEX
@simonroses

#RSAC

ME?

 Simon Roses Femerling

 Founder & CEO, VULNEX www.vulnex.com

 Blog: www.simonroses.com

 Twitter: @simonroses

 Former Microsoft, PwC, @Stake

 DARPA Cyber Fast Track award on software security project

 Black Hat, RSA, OWASP, SOURCE, AppSec, DeepSec, MSFT TECHNET

2

http://www.vulnex.com
http://www.simonroses.com/

#RSAC

BIG THANKS!

 DARPA Cyber Fast Track (CFT)

 Mudge

 The fine folks at BIT SYSTEMS

3

#RSAC

TALK OBJECTIVES

 Secure development

 Verify software security posture

4

#RSAC

AGENDA

1. Secure Development

2. Security Mitigations

3. BinSecSweeper

4. Case Studies

5. Conclusions

5

1. Secure Development

6

#RSAC

1. MICROSOFT SDL

#RSAC

1. OPENSAMM

8

#RSAC

1. IT’S ABOUT SAVING MONEY!

9

#RSAC

1. LET’S AVOID

10

D-LINK ROUTER BACKDOOR

CVE-2013-6462: Stack buffer overflow (20 years old)

Multiple CVEs:
• CVE-2013-5359
• CVE-2013-5358
• CVE-2013-5357
• CVE-2013-5349

#RSAC

1. BINARY INTELLIGENCE

Security
Mitigations

Compiler
File

Information

Vulnerabilities

• Size
• Hash
• Timestamp
• Strings

• Name
• Version

• DEP
• ASLR
• Stack Cookies

• Unsafe API
• Weak Crypto
• Backdoors

2. Security Mitigations

#RSAC

2. SOME COMPILERS OFFER GOOD SECURITY
DEFENSES

 Visual Studio

 GCC

 LLVM (Xcode)

13

#RSAC

2. SDL MICROSOFT GUIDE 5.2

 “Use minimum code generation suite and libraries. For unmanaged, native C/C++ code, use Visual C++ 2010 as it offers all the SDL-

mandated compiler and linker flags, including /GS, /DYNAMICBASE, /NXCOMPAT, and /SAFESEH. For managed code, use Visual

Studio® 2008 SP1 or later. Use the currently required (or later) versions of compilers to compile options for the Win32®, Win64, WinCE,

and Macintosh target platforms, as listed in Appendix E: SDL Required and Recommended Compilers, Tools, and Options for All Platforms. The

biggest change in Visual Studio 2008 SP1 and later is Data Execution Prevention (DEP) support, enabled by default for all binaries, which

can help protect against classes of buffer overrun.”

 “For unmanaged C or C++ code, BinScope must indicate a "Pass" in the compiler version field for all binaries. For managed code, an

attestation is required that the compiler version used to ship the product is the version outlined in this document or later.”

 “Banned application programming interfaces (APIs). All native C and C++ code must not use banned versions of string buffer handling

functions.”

14

http://www.microsoft.com/en-us/download/confirmation.aspx?id=29884

#RSAC

2. Visual Studio Defenses

1) Only available in Visual Studio Ultimate
2) Defense enhanced

#RSAC

2. Visual Studio Defenses

 Stack buffer protection (/GS)

 Code Analysis

 Data Execution Prevention (DEP)

 Address Space Layout Randomization (ASLR)

 Security Development Lifecycle (/SDL)(VS 2012)

 /sdl causes SDL mandatory compiler warnings to be treated as errors during compilation.

 /sdl enables additional code generation features such as increasing the scope of stack
buffer overrun protection and initialization or sanitization of pointers in a limited set of well-
defined scenarios.

16

#RSAC

2. GCC Defenses

17

#RSAC

2. GCC SECURITY

 Decent security defenses by not enabled by default

 Mudflap Pointer Debugging (removed in GCC 4.9, in favor of Address Sanitizer)

 Instruments for buffer overflows

 Address Sanitizer (http://code.google.com/p/address-sanitizer/) GCC 4.8

 It finds use-after-free and {heap,stack,global}-buffer overflow bugs in C/C++ programs.

 -fstack-protector strong included in GCC 4.9, previous version as a patch

18

http://code.google.com/p/address-sanitizer/

#RSAC

2. LLVM Defenses

19

1) Enhanced defense

#RSAC

2. LLVM SECURITY

 Some mitigations enabled by default

 Clang Static Analyzer

 http://clang-analyzer.llvm.org/available_checks.html

20

http://clang-analyzer.llvm.org/available_checks.html
http://clang-analyzer.llvm.org/available_checks.html
http://clang-analyzer.llvm.org/available_checks.html

#RSAC

2. DEVELOPERS! DEVELOPERS!

 No excuse, build & ship software with defenses enabled

21

3. BinSecSweeper

#RSAC

3. Why BinSecSweeper?

 BinSecSweeper is VULNEX binary security verification tool to ensure applications have been built

in compliance with Application Assurance best practices

 The goal for BinSecSweeper is a tool:

 Developers can use to verify that their output binaries are safe after compilation and before
releasing their products

 IT security pros to scan their infrastructure to identify binaries with weak security defenses or
vulnerabilities.

 BinSecSweeper is a cross platform tool (works on Windows and Linux) and can scan different file

formats: PE and ELF.

#RSAC

3. FEATURES

 100% open source

 Easy to use

 Cross-platform works on Windows & Linux

 Scans Windows (PE) and Unix (ELF) files for security checks

 Configurable

 Analysis Engine

 Extensible by plugins

 Reporting

24

#RSAC

3. BinSecSweeper in Action I

#RSAC

3. BinSecSweeper in Action II

#RSAC

CHECK DESCRIPTION

Address space layout randomization (ASLR) Checks if binary has opted the ASLR. Link with /DYNAMICBASE

Stack Cookies (GS) Verifies if binary was compiled with Stack Cookies protection.
Compile with /GS

HotPatch

Checks if binary is prepared for hot patching. Compile with /hotpatch

Compatible with Data Execution Prevention (NXCOMPAT) Validates if binary has opted hardware Data Execution Prevention
(DEP). Link with /NXCOMPAT

Structured Exception Handling (SEH)

Checks if binary was linked with SafeSEH. Link with /SAFESEH

Abobe Malware Classifier Analyzes binary for malware behavior using machine learning
algorithms

Visual Studio Compiler Fingerprinting Identifies if binary was compiled with Visual Studio and version
(2005, 2008, 2010 & 2012)

Packer Checks if binary has been packed

Insecure API Check if binary uses banned API

3. Current Windows Checks

#RSAC

CHECK DESCRIPTION

Fortify Source Checks if binary was compiled with buffer overflow protection
(bounds checking). Compile with –D_FORTIFY_SOURCE=X

Never eXecute (NX) Verifies if binary was compiled with NX to reduce the area an
attacker can use to perform arbitrary code execution.

Position Independent Code (PIE) Checks if binary was compiled with PIE to protects against "return-to-
text" and generally frustrates memory corruption attacks. Compile
with –fPIE -pie

RELocation Read-Only (RELRO) Validates if binary was compiled with RELRO (partial/full) to harden
data sections. Compile with –z,relro,-z,now

Stack Canary Checks if binary was compiled with stack protector to protect against
stack overflows. Compile with –fstack-protector

3. Current Linux Checks

#RSAC

3. Plugin Example: Windows ASLR

#RSAC

3. Plugin Example: Linux fortify_source

#RSAC

3. Reporting

#RSAC

 More plugins:

 Windows, Linux, etc.

 Mobile

 Malware

 Backdoors

 Compilers

 Packers

 Metrics panel

 Diff across product / versions

3. BinSecSweeper: what’s next!

#RSAC

 Download BinSecSweeper software from www.vulnex.com

 After RSA USA (please give us a couple of weeks to finish up

doc )

3. BinSecSwepeper: where?

http://www.vulnex.com

4. Case Studies

#RSAC

4. Remember Picassa?

35

Missing: ASLR + DEP
Good: Stack Cookies

But was still exploitable!

#RSAC

4. Are you compiling your app with zlib.dll ?

36

#RSAC

4. Are your 3rd party components improving?

 Python 2.7 -> sqlite3.dll

 Python 3.3 -> sqlite3.dll

37

#RSAC

4. A DLL inside a well-known software

38

#RSAC

4. The most common word inside a Microsoft binary?

39

5. Conclusions

#RSAC

5. Verifying Software Security Posture Matters!

 Binaries contain a lot of information!

 The security posture of the software developed by you is important:
 Security improves Quality

 Branding (shows you care about security)

 How is the security posture of software vendors you use?

#RSAC

5. Does your Software:

 Has it been compiled with all possible mitigations?

 Use insecure APIs?

 Contain malware?

 Backdoors?

42

#RSAC

Q&A

 FIN

 Thanks!

 @simonroses

	Writing Secure Software is hard, but at least add mitigations!
	ME?
	BIG THANKS!
	TALK OBJECTIVES
	AGENDA
	1. Secure Development
	1. MICROSOFT SDL
	1. OPENSAMM
	1. IT’S ABOUT SAVING MONEY!
	1. LET’S AVOID
	1. BINARY INTELLIGENCE
	2. Security Mitigations
	2. SOME COMPILERS OFFER GOOD SECURITY DEFENSES
	2. SDL MICROSOFT GUIDE 5.2
	2. Visual Studio Defenses
	2. Visual Studio Defenses
	2. GCC Defenses
	2. GCC SECURITY
	2. LLVM Defenses
	2. LLVM SECURITY
	2. DEVELOPERS! DEVELOPERS!
	3. BinSecSweeper
	3. Why BinSecSweeper?
	3. FEATURES
	3. BinSecSweeper in Action I
	3. BinSecSweeper in Action II
	3. Current Windows Checks
	3. Current Linux Checks
	3. Plugin Example: Windows ASLR
	3. Plugin Example: Linux fortify_source
	3. Reporting
	3. BinSecSweeper: what’s next!
	3. BinSecSwepeper: where?
	4. Case Studies
	4. Remember Picassa?
	4. Are you compiling your app with zlib.dll ?
	4. Are your 3rd party components improving?
	4. A DLL inside a well-known software
	4. The most common word inside a Microsoft binary?
	5. Conclusions
	5. Verifying Software Security Posture Matters!
	5. Does your Software:
	Q&A

