
Next Level Cheating and
Leveling Up Mitigations
Nicolas Guigo Joel St. John

• A brief history of cheating in video games

• Current state of the arms race (cheating vs anti-cheat)

• The future of cheating

• Attacking anti-cheat software

• Solutions and conclusions

Agenda

The Money Aspect

• Multi-billion dollar industry

• Subscription models

• Streaming/Sponsorship

• Virtual grey market

What is Cheating?

• Unfair advantage

• Abusing game logic
• Multi-accounts

• Botting/Scripting

• Manipulating extraneous client-side data

• Exploiting client / server code bugs
• Abusing bugs/glitches

• Attacking other players or the game server

A History of Cheating

• Early computer games

• Early multiplayer games

• Modern multiplayer games

• Examples!

Common Cheating Vectors

• Speed/Movement hacks

• Botting

• Scripting

Common Cheating Vectors

• Speed/Movement hacks

• Botting

• Scripting

• Player/item finding hacks

Common Cheating Vectors

• Speed/Movement hacks

• Botting

• Scripting

• Player/item finding hacks

• Wall hacks/x-ray mods

• Warden (~2004)
• World of Warcraft

• Starcraft 2

• Valve Anti-Cheat (VAC,
2002)
• Counter-Strike

• Team Fortress 2

• BattlEye (2004)
• Arma 2/3

• Day-Z

• User-land

• Reactive

• Only a mitigation

The Rise of Anti-Cheat

The Current State of Cheating in Games

• DLL injection (internal cheating)
• Loader
• DLL implementing cheat logic

• Hook Direct3D calls
• Read/Write memory

• Network packet manipulation
• Modify packets in-transit
• Repeat packets
• Introduce artificial lag

• External cheating
• ReadProcessMemory / WriteProcessMemory
• Transparent window

Current State of Anti-Cheat

• In process
• Signature checks
• Game specific checks
• Hook detection

• Pointer chain checks

• Call stacks periodic checks
• Debug related detections

• Out of process
• Signature based detection
• Pattern searching in all processes address space

• Various
• Scanning for game process handles
• Scanning files for signatures (offline)

• Send suspected programs to server for analysis

• Check DNS history for cheat update servers
• Etc.

The Future of Cheating

• Architecture
• Rootkit-like functionality to hide activity

• Kernel driver
• Makes the UM portion a protected process (DRM)

• Maps pages from game memory into the cheat process

• Install a filter device on the FS stack (TBD)

• User mode executable
• Keeps track of game/cheat mappings

• Implements the cheat logic

Dual mapping snippet

Dual-mapping demo

Pros / Cons

• Strengths
• Generic
• Virtually undetectable from user-mode
• Straightforward conversion from publicly

available cheat sources
• Good performance

• Weaknesses
• Can be challenged by KM anti-cheat
• Run in debug mode or use signed driver

Attacking Anti-Cheat Software

• Anti-cheat libraries create additional attack
surface

• On client

• On server

• This attack surface is common to multiple
games

• What happens if there is a flaw?

BattlEye

• General architecture
• On the client

• DLL in game process

• System service

• On the server
• DLL in game server process

• Master server

• Hooks game recv() call

BE Packet structure

• Packet structure

• 2 bytes signature

• Hash

• Len /code

• data

'B' 'E' H1 H2 H3 H4 LEN DATA

Sign extension

Integer overflow -> heap overwrite

Exploitability

• Denial of Service is trivial
• Remote code execution possible

• Overwriting heap data
• Attacker-controlled data

• Very difficult
• Separate heap limits attack surface

• Tool: https://github.com/iSECPartners/vtfinder

• Race condition
• Code execution must be achieved before thread crashes
• Must then prevent crash from happening

https://github.com/iSECPartners/vtfinder
https://github.com/iSECPartners/vtfinder

BattlEye console timing attack

• Length check

• String comparison

BattlEye timing attack demo

Disclosure timeline

• Both vulnerabilities

• Verified 08/2014

• Disclosed to vendor 08/2014

• Bugs
• Memory corruption | fixed

• Login vulnerability | unpatched (to date)

The Future of Anti-Cheat

• Mitigations

• Move the arms race to the kernel

• Human factor

• Solutions

• Full streaming of games

• Closed platform

Conclusion

• Anti-cheat is a mitigation at best

• Anti-cheat creates additional attack surface

• Current anti-cheat can be completely
bypassed

• Fundamental design changes are needed

• Thank you
• Rachel Engel & Jason Bubolz

• Rohit Shambhuni (iSEC 2014 Intern, Arizona State)

• Taylor Trabun (iSEC 2014 Intern, University of Idaho)

• Too many iSECers to list

Questions

Interns are people too!

• Boneh, D. and Brumley, D (2003). Remote timing attacks
are practical. 12th Usenix Security Symposium.
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-
timing.pdf

• Vtfinder. https://github.com/iSECPartners/vtfinder

References

http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf
http://www.symantec.com/connect/articles/new-way-bypass-windows-heap-protections
https://github.com/iSECPartners/vtfinder
https://github.com/iSECPartners/vtfinder

UK Offices
Manchester - Head Office
Cheltenham
Edinburgh
Leatherhead
London
Thame

North American Offices
San Francisco
Atlanta
New York
Seattle

Australian Offices
Sydney

European Offices
Amsterdam - Netherlands
Munich – Germany
Zurich - Switzerland

