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Abstract. This paper describes new methods for fast correlation at-
tacks, based on the theory of convolutional codes. They can be applied
to arbitrary LFSR feedback polynomials, in opposite to the previous
methods, which mainly focus on feedback polynomials of low weight.
The results improve significantly the few previous results for this general
case, and are in many cases comparable with corresponding results for
low weight feedback polynomials.
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1 Introduction

A binary additive stream cipher is a synchronous stream cipher in which the
keystream, the plaintext and the ciphertext are sequences of binary digits. The
output of the keystream generator, z1, z2, . . . is added bitwise to the plaintext
sequence m1, m2, . . . , producing the ciphertext c1, c2, . . . . Each secret key k as
input to the keystream generator corresponds to an output sequence. Since the
secret key k is shared between the transmitter and the receiver, the receiver can
decrypt, and obtain the message sequence, by adding the output of the keystream
generator to the ciphertext, see Figure 1.
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Fig. 1. Principle of binary additive stream ciphers
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The goal in stream cipher design is to efficiently produce random-looking se-
quences that in some sense are “indistinguishable” from truly random sequences.
From a cryptanalysis point of view, a good stream cipher should be resistant
against a known-plaintext attack. In a known-plaintext attack the cryptanalyst
is given a plaintext and the corresponding ciphertext, and the task is to deter-
mine a key k. For a synchronous stream cipher, this is equivalent to the problem
of finding the key k that produced a given keystream z1, z2, . . . , zN . Through-
out this paper, we hence assume that a given keystream z1, z2, . . . , zN is in the
cryptanalyst’s possession and that cryptanalysis is the problem of restoring the
secret key.

In stream cipher design, one usually use linear feedback shift registers, LF-
SRs, as building blocks in different ways, and the secret key k is often chosen to
be the initial state of the LFSRs.

There are several classes of general cryptanalytic attacks against stream ci-
phers [9]. In our opinion, the most important class of attacks on LFSR-based
stream ciphers is correlation attacks. Basically, if one can in some way detect a
correlation between the known output sequence and the output of one individual
LFSR, this can be used in a “divide-and-conquer” attack on the individual LFSR
[12,13,7,8]. There is no requirement of structure of any kind for the key genera-
tor. The only thing that matters is the fact that, if u1, u2, . . . denotes the output
of the particular LFSR, we have a correlation of the form P (ui = zi) 6= 0.5, see
Figure 2.

KEYSTREAM GENERATOR

LFSR

-

-

zi

ui

Fig. 2. A sufficient requirement for a correlation attack, P (ui = zi) 6= 0.5.

A “textbook” methodology for producing random-like sequences from LFSRs
is to combine the output of several LFSRs by a nonlinear function f with desired
properties. Here f is a binary boolean function in n variables. The purpose is
to destroy the linearity of the LFSR sequences and hence provide the resulting
sequence with a large linear complexity [9]. This is depicted in Figure 3.

It is worth noticing that there always exists a correlation between the output
zi and either one or a set of M LFSR output symbols {u(i1)

i , u
(i2)
i , . . . , u

(iM )
i }

in the model above. It is well known that if f is a (M − 1)-resilient (but not
M -resilient) function then there is a correlation which can be expressed in the
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Fig. 3. Principle of nonlinear combination generators

form P (zi = u
(i1)
i + u

(i2)
i + · · · + u

(iM )
i ) 6= 0.5. It is also known that there is a

tradeoff between the resiliency and the nonlinearity of f , and hence M must be
rather small [12].

Returning to the previously mentioned correlation attacks, the above overview
demonstrates that finding a low complexity algorithm that successfully can use
the existing correlation in order to determine a part of the secret key can be a
very efficient way of attacking such stream ciphers in cryptanalysis. After the
initializing ideas of Siegenthaler [12,13], Meier and Staffelbach [7,8] found a very
interesting way of exploring the correlation in a fast correlation attack provided
that the feedback polynomial of the LFSR has a very low weight. This work was
followed by several papers, providing minor improvements to the initial results
of Meier and Staffelbach, see [10,1,2,11]. For a recent application, see [14]. How-
ever, the algorithms that are efficient (good performance and low complexity)
still require the feedback polynomial to be of low weight. Due to this require-
ment, it is today a general advise when constructing stream ciphers that the
generator polynomial should not be of low weight.

The problem addressed in this paper is the problem of constructing algo-
rithms achieving the similar performance and similar low complexity as men-
tioned above but for any feedback polynomial. The new algorithms that we pro-
pose are based on an interesting observation, namely that one can identify an
embedded low-rate convolutional code in the code generated by the LFSR se-
quences. This embedded convolutional code can then be decoded with low com-
plexity, using the Viterbi algorithm. From the result of the decoding phase, the
secret key can be obtained. These algorithms provide a remarkable improve-
ment over previous methods. As a particular example taken from [10], consider
a LFSR of length 40 with a weight 17 feedback polynomial, and an observed
sequence of length 4 · 105 bits. Let 1− p be the correlation probability. Then the
algorithm in [7,8] and the improvement in [10] are successful up to p ≤ 0.104
and p ≤ 0.122, respectively, whereas the proposed algorithm is successful up to
more than p ≤ 0.4 with similar computational complexity.

The paper is organized as follows. In Section 2 we give some preliminaries on
the decoding model that is used for cryptanalysis, and in Section 3 we shortly
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review some previous algorithms for fast correlation attacks. In Section 4 we
present our new ideas and give a description of the proposed algorithm. In Sec-
tion 5 the simulation results are presented, and finally, in Section 6 we give some
conclusions and possible extensions.

2 Preliminaries

Consider the model shown in Figure 2. As most other authors [13,7,8,10,1], we
use the approach of viewing the problem as a decoding problem. Let the LFSR
have length l and let the set of possible LFSR sequences be denoted by L.
Clearly, |L| = 2l and for a fixed length N the truncated sequences from L is
also a linear [N, l] block code [6], referred to as C. Furthermore, the keystream
sequence z = z1, z2, . . . , zN is regarded as the received channel output and the
LFSR sequence u = u1, u2, . . . , uN is regarded as a codeword from C. Due to the
correlation between ui and zi, we can describe each zi as the output of the binary
symmetric channel, BSC, when ui was transmitted. The correlation probability
1 − p, defined by 1 − p = P (ui = zi), gives p as the crossover probability (error
probability) in the BSC. W.l.o.g we can assume p < 0.5. This is all shown in
Figure 4.
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Fig. 4. Model for a correlation attack

The cryptanalyst’s problem can be formulated as follows. Given a length
N received word (z1, z2, . . . zN ) as output of the BSC(p), find the length N
codeword from C that was transmitted.

From simple coding arguments, it can be shown that the length N should be
at least around N0 = l/(1− h(p)) for unique decoding, where h(p) is the binary
entropy function. If the length of the output sequence N is modest but allows
unique decoding, say N = N0 + D, where D is a constant, the fastest methods
for decoding are probabilistic decoding algorithms like Leon or Stern algorithms
[5,15].

For received sequences of large length, N � N0, fast correlation attacks
[7,8] are sometimes applicable. These attacks resemble very much the iterative
decoding process proposed by Gallager [3] for low-weight parity-check codes.
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Due to the fact that the above attacks require the feedback polynomial g(x) (or
any multiple of g(x) of modest degree) to have a low weight, one usually refrain
from using such feedback polynomials in stream cipher design.

3 Fast Correlation Attacks – An Overview

In [7,8] Meier and Staffelbach presented two algorithms, referred to as A and
B, for fast correlation attacks. Instead of an exhaustive search as originally sug-
gested in [13], the algorithms are based on using certain parity check equations
created from the feedback polynomial of the LFSR. All different algorithms for
fast correlation attacks use two passes. In the first pass the algorithms find a
set of suitable parity check equations in the code C stemming from the LFSR.
The second pass uses these parity check equations in a fast decoding algorithm
to recover the transmitted codeword and hence the initial state of the LFSR.

The set of parity check equations that was used in [7,8] was created in two
separate steps. Let g(x) = 1+g1x

1+g2x
2+. . .+glx

l be the feedback polynomial,
and t the number of taps of the LFSR, i.e., the weight of g(x) (the number of
nonzero coefficients) is t + 1. Symbol number n of the LFSR sequence, un, can
then be written as un = g1un−1 + g2un−2 + . . . + glun−l. Since the weight of
g(x) is t + 1, there are the same number of relations involving a fixed position
un. Hence, we get in this way t + 1 different parity check equations for un.

Secondly, using the fact that g(x)j = g(xj) for j = 2i, parity check equations
are also generated by repeatingly squaring the polynomial g(x). So if g0(x) =
g(x), we create new polynomials by gk+1(x) = gk(x)2, k = 1, 2, . . . . This squaring
is continued until the degree of a polynomial gk(x) is greater than the length
N of the observed keystream. Each of the polynomials gk(x) are of weight t + 1
and hence each gives t + 1 new parity check equations for a fixed position un.

Combining this squaring technique with shifting the set of equations in time,
the same parity check equations are essentially valid in each index position of u.
From [7,8] the number of parity check equations, denoted m, that can be found
in this way is m ≈ log(N

2l )(t + 1), where log uses base 2.
In the second pass, one writes the m equations for position un as,

un + b1 = 0,
un + b2 = 0,

...
un + bm = 0,

(1)

where each bi is the sum of t different positions of u. Applying the same relations
above to the keystream we can calculate the following sums,

zn + y1 = L1

zn + y2 = L2

...
zn + ym = Lm.
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where yi is the sum of the positions in the keystream corresponding to the
positions in bi. Assume that h out of the m equations in (1) hold, i.e.,

h = |{i : Li = 0, 1 ≤ i ≤ m}|,
when we apply the equations to the keystream. Then it is possible to calculate
the probability p∗ = P (un = zn|h equation holds) as

p∗ =
psh(1 − s)m−h

psh(1 − s)m−h + (1 − p)(1 − s)hsm−h
,

where p = P (zn = an), and s = P (bi = yi).
Using the parity check equations found above, two different decoding methods

were suggested in [7,8]. The first algorithm, called Algorithm A, can shortly be
described as follows: First find the equations to each position of the received bit
and evaluate the equations. Then calculate the probabilities p∗ for each bit in
the keystream, select the l positions with highest value of p∗, and calculate a
candidate initial state. Finally, find the correct value by checking the correlation
between the sequence and the keystream for different small modifications of the
candidate initial state.

The second algorithm, called Algorithm B, used another approach. Instead
of calculating the probabilities p∗ once and then make a hard decision, the prob-
abilities are calculated iteratively. The algorithm uses two parameters pthr and
Nthr.

1. For all symbols in the keystream, calculate p∗ and determine the number of
positions Nw with p∗ < pthr.

2. If Nw < Nthr repeat step 1 with p replaced by p∗.
3. Complement the bits with p∗ < pthr and reset the probabilities to p.
4. If not all equations are satisfied go to step 1.

The performance of the algorithms described above is given in [7,8]. The
algorithms above work well when the LFSR contains few taps, but for LFSRs
with many taps the algorithms fail. The reason for this failure is that for LFSRs
with many taps each parity check equation gives a very small average correction
and hence many equations are needed. An improvement was suggested in [10],
where a new method for finding parity check equations was suggested. Let u0 be
the initial state of the LFSR. The state after t shifts can be written as ut = Atu0,
where A is an l×l matrix that depends of the feedback polynomial. Using powers
of the matrix A a set of parity check equations can be found.

Another method of finding parity check equations was suggested in [1]. The
idea of this algorithm is to use an algorithm for finding codewords of low weight
in a general linear code.

4 New Fast Correlation Attacks Based on Convolutional
Codes

The general idea behind the algorithm to be proposed can be described as follows.
Looking at the parity check equations as described in (1), they are designed for a
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second pass that consists of a very simple memoryless decoding algorithm. For a
general feedback polynomial, this puts very hard restrictions on the parity check
equations that can be used in (1) (weight ≤ t+1 for a very low t). Our approach
considers slightly more advanced decoding algorithms that include memory, but
still have a low decoding complexity. This allows us to have looser restrictions on
the parity check equations that can be used, leading to many more, and more,
powerful equations. This work uses the Viterbi algorithm with memory 10− 16
as its decoding algorithm. The corresponding restrictions on the parity check
equations will be apparent in the sequel.

The proposed algorithm transforms a part of the code C stemming from the
LFSR sequences into a convolutional code. The encoder of this convolutional
code is created by finding suitable parity check equations from C. Some notation
and basic concepts regarding convolutional codes that are frequently used can
be found in Appendix A.

The convolutional code will have rate R = 1/(m + 1), where the constant
(m + 1) will be determined later. Furthermore, let B be a fixed memory size. In
a convolutional encoder with memory B the vector vn of codeword symbols at
time n is of the form

vn = unG0 + un−1G1 + . . . un−BGB, (2)

where in the case R = 1/(m+ 1) each Gi is a vector of length (m + 1). The task
in the first pass of the algorithm is to find suitable parity check equations that
will determine the vectors Gi, 0 ≤ i ≤ m, defining the convolutional code.

Let us start with the linear code C stemming from the LFSR sequences. There
is a corresponding l×N generator matrix GLFSR. Clearly, u = u0GLFSR, where
u0 is the initial state of the LFSR. The generator matrix is furthermore written
on systematic form, i.e., GLFSR =

(
Il Z

)
, where Il is the l × l identity matrix.

Given a generator matrix on this form, the parity check matrix is written as
PLFSR =

(
ZT IN−l

)
, where each row of P defines a parity check equation in

C.
We are now interested in finding parity check equations that involve a cur-

rent symbol un, an arbitrary linear combination of the B previous symbols
un−1, . . . , un−B, together with at most t other symbols. Clearly, t should be
small and we mainly consider t = 2.

To find these equations we start by considering the index position n = B +1.
Introduce the following notation for the generator matrix,

GLFSR =
(

IB+1 ZB+1

0l−B−1 Zl−B−1

)
. (3)

Parity check equations for uB+1 with weight t outside the first B + 1 positions
can then be found by finding linear combinations of t columns of Zl−B−1 that
add to the all zero column vector. This corresponds to the problem of finding
weight t codewords in the code dual to Zl−B−1.

For the case t = 2 the parity check equations can be found in a very simple
way as follows. A parity check equation with t = 2 is found if two columns from
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GLFSR have the same value when restricted to the last l − B − 1 entries (the
Zl−B−1 part). Hence, we simply put each column of Zl−B−1 into one of 2l−B−1

different “buckets”, sorted according to the value of the last l−B−1 entries. Each
pair of columns in each bucket will provide us with one parity check equation,
provided uB+1 is included.

Assume that the above procedure gives us a set of m parity check equations
for uB+1, written as

uB+1 +
∑B

i=1 ci1uB+1−i +
∑≤t

i=1 uji1 = 0,

uB+1 +
∑B

i=1 ci2uB+1−i +
∑≤t

i=1 uji2 = 0,
...

uB+1 +
∑B

i=1 cimuB+1−i +
∑≤t

i=1 ujim = 0.

Now it follows directly from the cyclic structure of the LFSR sequences that
exactly the same set of parity checks is valid for any index position n simply by
shifting all the symbols in time, resulting in

un +
∑B

i=1 ci1un−i + b1 = 0,

un +
∑B

i=1 ci2un−i + b2 = 0,
...

un +
∑B

i=1 cimun−i + bm = 0,

(4)

where bk =
∑≤t

i=1 ujik
, 1 ≤ k ≤ m is the sum of (at most) t positions in u.

Using the equations above we next create an R = 1/(m + 1) bi-infinite
systematic convolutional encoder. Recall that the generator matrix for such a
code is of the form

G =




. . . . . . . . .
G0 G1 . . . GB

G0 G1 . . . GB

. . . . . . . . .


 , (5)

where the blank parts are regarded as zeros. Identifying the parity check equa-
tions from (4) with the description form of the convolutional code as in (5) gives
us




G0

G1

...
GB


 =




1 1 1 . . . 1
0 c11 c12 . . . c1m

0 c21 c22 . . . c2m

...
...

. . . . . .
...

0 cB1 cB2 . . . cBm


 . (6)

For each defined codeword symbol v
(i)
n in the convolutional code we have an

estimate of that symbol from the transmitted sequence z.
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Consider t = 2. If v
(i)
n = un (an information bit) then P (v(i)

n = zn) = 1 − p.
Otherwise, if v

(i)
n = uj1i +uj2i from (4) then P (v(i)

n = zj1i + zj2i) = (1−p)2 +p2.
Using these estimates we can construct a sequence

r = . . . r(0)
n r(1)

n . . . r(m)
n r

(0)
n+1r

(1)
n+1 . . . r

(m)
n+1 . . . ,

where r
(0)
n = zn and r

(i)
n = zj1i + zj2i , 1 ≤ i ≤ m, that plays the role of a

received sequence for the convolutional code. Then we have from the estimates
that P (v(0)

n = r
(0)
n ) = 1−p and that P (v(i)

n = r
(i)
n ) = (1−p)2 +p2 for 1 ≤ i ≤ m.

Next, we enter the decoding phase.
To recover the initial state of the LFSR it is enough to decode l consecutive

information bits correctly. Optimal decoding (ML decoding) of convolutional
codes uses the Viterbi algorithm to decode.

The original Viterbi algorithm assumes that the convolutional encoder starts
in state 0. However, in our application there is neither a starting state, nor
an ending state. To deal with this we start by assigning the metrics log P (s =
z1, z2, . . . , zB) to each state s in the trellis. We then proceed to decode from
n = B as usual. Due to the difference regarding the endpoints, we run the
Viterbi algorithm over a number of “dummy” information symbols, before we
come to the l information symbols that we try to decode correctly. Similarly, af-
ter these l information symbols we continue the Viterbi algorithm over another
set of “dummy” information symbols before the algorithm outputs the result.
These are well known techniques in Viterbi decoding, and typically one has to
decode approximately 4 − 5 times B “dummy” information symbols, [4], before
making the decoding decision. This means that decoding takes place over ap-
proximately J = l+10B information symbols, where the l symbols in the middle
are regarded as the l bit sequence that we want to estimate. This estimate from
the Viterbi algorithm is then used to provide the corresponding estimate of the
initial state of the LFSR. This conclude the general description and we give a
detailed summary of the algorithm for t = 2.

The Proposed Algorithm (t = 2)

Input: The systematic l × N generator matrix in the form

GLFSR =
(
IB+1 gB+2 . . . gJ gJ+1 . . . gN

)
.

1. For J + 1 ≤ i, j ≤ N find all pairs of columns gi,gj such that

(gi + gj)T = (∗, ∗, . . . , ∗︸ ︷︷ ︸
B

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
l−B−1

),

where ∗ means an arbitrary value. Then add

(un−B, un−B−1, . . . , un, 0, 0, . . . , 0) · (gi + gj) + un+i + un+j = 0

to the set of parity check equations as in (4).



356 Thomas Johansson and Fredrik Jönsson

2. From this set, calculate G0, G1, . . . , GB as in (6).
Create a received vector r from z by r

(0)
n = zn and r

(i)
n = zj1i + zj2i for

1 ≤ i ≤ m, where j1i and j2i are the indices determined in 1.
3. Let P (v(0)

n = r
(0)
n ) = 1 − p and P (v(i)

n = r
(i)
n ) = (1 − p)2 + p2 for B + 1 ≤

n ≤ l + 10B.
Decoding part

4. For each state s, let log(P (s = (z1, z2 · · · , zB)) be the initial metric for that
state when we start the Viterbi algorithm at n = B.

5. Decode the received sequence r using the Viterbi algorithm from n = B until
n = J . Output the estimated information sequence (û5B+1, û5B+2, . . . , û5B+l).
Finally, calculate the corresponding initial state of the LFSR.

An Illustrating Example

Consider a length 40 LFSR, with feedback polynomial

g(x) = 1 + x + x3 + x5 + x9 + x11 + x12 + x17 + x19 +
x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40.

An observed key sequence z of length N = 40000 is found to be correlated to
the LFSR sequence with probability 1 − p = 1 − 0.1. We want to decode the
received sequence z transmitted over BSC(0.1) using the proposed method with
memory B = 10.

We start by writing down the generator matrix GLFSR. Then we search for
suitable parity check equations by finding all pairs of columns in GLFSR for
which the last 29 index positions are all zero. Each such pair gives rise to one
parity check equation with t = 2. In this case, the following three parity check
equations were found

un + un−1 + un−8 + un−10 + un+4690 + un+23655 = 0,
un + un−2 + un−3 + un−4 + un−7 + un−8 + un+4817 + un+31970 = 0,
un + un−2 + un−3 + un−4 + un−5 + un−9 + un+18080 + un+4626 = 0,

which are all valid for 1 ≤ n ≤ 8030. We get a fourth codeword symbol by the
information symbol un itself. Then we can identify




G0

G1

...
GB


 =




1111
0100
0011

...
0100


 .

Thus, we have created a rate R = 1/4 convolutional code having generator
matrix

G =




. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1111 0100 0011 0011 0011 0001 0000 0010 0110 0001 0100

1111 0100 0011 0011 0011 0001 0000 0010 0110 0001 0100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


 .
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Each rn in the received sequence r = r0r1 . . . for the convolutional code is
created as

r
(0)
n = zn,

r
(1)
n = zn+4690 + zn+23655,

r
(2)
n = zn+4817 + zn+31970,

r
(3)
n = zn+4626 + zn+18080,

and P (v(0)
n = r

(0)
n ) = 0.9 and P (v(i)

n = r
(i)
n ) = 0.82, 1 ≤ i ≤ 3. Finally we

run the Viterbi algorithm, starting in n = 10 with all 210 different states
(u1, u2, . . . , u10). Each state have the initial metric log(P (u1 = z1)P (u2 =
z2) · · ·P (uB = zB)). After reaching n = 140, we output (û51, û52, . . . , û90).

5 Simulation Results

In this section we present some simulation results for our algorithm. The obtained
results are compared with the received results in [7,8,10]. We choose to use
exactly the same case as tabulated in [10]. Thus all the simulations are based on
a LFSR with length l = 40, and a weight 17 feedback polynomial which is

g(x) = 1 + x + x3 + x5 + x9 + x11 + x12 + x17 + x19 +
x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40.

[7,8] [10] Our Algorithm

N/l Alg. B Alg. B = 13 B = 14 B = 15

103 0.092 0.096 0.19 0.22 0.26

104 0.104 0.122 0.37 0.39 0.40

Table 1. Maximum p for different algorithms.

In Table 1 the maximum crossover probability p is shown for algorithm B
in [7,8], the improvement in [10], and the proposed algorithm. Our results are
generated for different sizes of the memory B. As a particular example, we can see
that when we have 4 · 105 received symbols the proposed algorithm is successful
up to more than p = 0.4 for memory B = 15, whereas the algorithm in [7,8]
and the improvement in [10] are successful only up to a crossover probability of
0.104 and 0.122, respectively. In this case, B = 15, the proposed algorithm finds
roughly 2300 parity checks and hence the embedded convolutional code is of rate
roughly R = 1/2300. Also, the decoding takes place over J = 200 information
symbols. The computational complexity is proportional to J ·m · 2B, and in the
case B = 15, M = 2300, J = 200 the whole attack takes less than one hour on a
PC.
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Another interesting property to look at is the success rate, i.e., the probability
for successful decoding given a channel with crossover probability p. In Figure 5
we plot the success rate as a function of p, when B = 14, for 40000 and 400000
received symbols, respectively.
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Fig. 5. Success rate for B = 14 with N = 40000 and N = 400000.

Finally, we make a comment regarding the theoretical performance of the
proposed algorithm for t = 2. For fixed parameters l, B and N , we can determine
the expected number of suitable parity checks, i.e., the parameter m. Then one
can show that the success rate will be very close to 1 if the rate R = 1/(m + 1)
is below the cutoff rate R0 [4] for the BSC(2p(1− p)). However, we observe that
the simulated results are very close to the capacity C of the BSC(2p(1 − p)),
which is C = 1 − h(2p(1 − p)).

6 Conclusions

New methods for fast correlation attacks have been proposed, based on iden-
tifying an embedded convolutional code in the code C generated by the LFSR
sequences of a fixed length N . The results show a significant improvement com-
pared with previous work regarding general feedback polynomials. We have de-
scribed the methods using an ordinary convolutional code together with standard
Viterbi decoding. There are many different ways to extend these methods that
can be considered in future work.

Firstly, we note that by permuting the columns of C before searching for
parity checks, we receive a time-varying convolutional code. Secondly, the com-
putational complexity of the Viterbi algorithm is growing exponentially with
B, which means that in practice B is bounded to be at most 20 − 30. But
there are several other decoding algorithms, which are not ML, that have a
much lower computational complexity. Examples of such algorithms are the M -
algorithm (list decoding) and different sequential decoding algorithms [4]. They
are promising candidates for improving the performance.
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Finally, we also mention the possibility of using iterative decoding. This can
roughly be described as follows. Identify several convolutional codes in C that
have certain codeword symbols in common. Then decode them using APP (a
posteriori probability) decoding algorithms [4] and pass the symbol probabilities
to the other decoders. This procedure is iterated until the symbol probabilities
have converged to 0 or 1. We believe that this is a very promising approach,
and that we might see a further improvement in performance compared to the
results in this paper.
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A Convolutional Codes

This section reviews some basic concepts regarding convolutional codes. For a
more thorough treatment we refer to [4]. A convolutional code is a linear code
where the information symbols and the codeword symbols are treated as infinite
sequences. In a general rate R = b/c, b ≤ c binary convolutional encoder (time-
invariant and without feedback) the causal information sequence

u = u0u1 . . . = u
(0)
0 u

(1)
0 . . . u

(b)
0 u

(0)
1 u

(1)
1 . . . u

(b)
1 . . .

is encoded as the causal code sequence

v = v0v1 . . . = v
(0)
0 v

(1)
0 . . . v

(c)
0 v

(0)
1 v

(1)
1 . . . v

(c)
1 . . . ,

where

vt = f(ut,ut−1, . . . ,ut−B).

The function f must be a linear function. Furthermore, the parameter B is called
the encoder memory.

In our particular application we only consider convolutional codes for which
the rate is of the form R = 1/c, i.e., b = 1, and thus we now adopt the notation

u = u0u1 . . . ,

where ui ∈ F2 . Since f is a linear function, it is convenient to write

vt = utG0 + ut−1G1 + · · · + ut−BGB,

where Gi, 0 ≤ i ≤ B is a 1× c matrix, i.e., a length c vector. Now we can rewrite
the expression for the code sequence as

v0v1 . . . = (u0u1 . . . )G,

where

G =




G0 G1 . . . GB

G0 G1 . . . GB

. . . . . . . . .


 , (7)

and the blank parts of G is assumed to be filled with zeros. We call G the
generator matrix. The encoder can be illustrated as in Figure 6.
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ut

vt

. . .

. . .

Fig. 6. A general convolutional encoder (without feedback).

The state of a system is a description that together with a specification of
the present and future inputs, can determine the present and future outputs.
From Figure 6 it is easy to see that we can choose the contents of the memory
cells at time t as the encoder state σt at time t,

σt = ut−1ut−2 . . . ut−B.

Thus the encoder has at most 2B different states at each time instant. We can
now consider all possible states σt as vertices in a graph and put an edge between
two adjacent states σt and σt+1 if and only if there is an information symbol
ut such that takes the state from σt at time t to σt+1 at time t + 1. This graph
gives rise to a so called trellis. The convolutional code (or linear trellis code)
is the set of all possible codeword sequences (possibly with a predetermined
starting and ending state). If we label the edge in the trellis going from σt to
σt+1 with vt = utG0 + ut−1G1 + · · · + ut−BGB the set of codeword sequences
will correspond to the set of possible paths in the trellis.

Example: Consider the rate R = 1/2 convolutional encoder with generator
matrix

G =




11 10 11
11 10 11

. . . . . . . . .


 .

The encoder can be implemented as in Figure 7, and the corresponding trellis is
depicted in Figure 8.

Suppose now that our trellis code is transmitted over the BSC with error
probability p. We are interested in determining the most probable codeword
from a received sequence r,

r = r0r1 . . . = r
(0)
0 r

(1)
0 . . . r

(c)
0 r

(0)
1 r

(1)
1 . . . r

(c)
1 . . . .

This corresponds to a maximum likelihood decoding problem, ML decoding.
The solution to the ML decoding problem for convolutional codes is the famous
Viterbi algorithm.
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Fig. 7. A rate R = 1/2 convolutional encoder.
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Fig. 8. A binary rate R = 1/2 trellis code.

The ML decoder chooses as its estimate v̂ a sequence v that maximizes
P (r|v). Assuming that the starting and ending state is predetermined to be the
zero-state, the ML decoder works as follows. Introduce the Viterbi branch met-
ric, µ(rn,vn) =

∑
i log P (r(i)

n |v(i)
n ) (One usually introduce a translation and a

scaling in order to approximate the metric values with suitable integers [4]).

The Viterbi Algorithm

1. Assign the Viterbi metric to be zero at the initial node, and set n = 0.
2. For each node at depth n+1: Find for each of its predecessors at depth

n the sum of the metric of the predecessor and the branch metric of
the connecting branch. Find the maximum sum and assign this metric
value to the node. Also, label the node with the shortest path to it.

3. If we have reached the end of the trellis, stop and choose as the esti-
mate v̂ a path to the ending node with largest Viterbi metric; otherwise
increment n and go to 2.
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