
An Analysis of Exponentiation

Based on Formal Languages

Luke O’Connor

IBM Research Division
Zurich Research Laboratory
Säumerstrasse 4, Rüschlikon

CH-8803, Switzerland
oco@zurich.ibm.com

Abstract. A recoding rule for exponentiation is a method for reducing
the cost of the exponentiation ae by reducing the number of required
multiplications. If w(e) is the (hamming) weight of e, and ē the result of
applying the recoding rule A to e, then the purpose is to reduce wA(ē) as
compared to w(e). A well-known example of a recoding rule is to convert
a binary exponent into a signed-digit representation in terms of the digits
{ 1, 1̄, 0 } where 1̄ = −1, by recoding runs of 1’s. In this paper we show
how three recoding rules can be modelled via regular languages to obtain
precise information about the resulting weight distributions. In particular
we analyse the recoding rules employed by the 2k-ary, sliding window
and optimal signed-digit exponentiation algorithms. We prove that the
sliding window method has an expected recoded weight of approximately
n/(k + 1) for relevant k-bit windows and n-bit exponents, and also that
the variance is small. We also prove for the optimal signed digit method
that the expected weight is approximately n/3 with a variance of 2n/27.
In general the sliding window method provides the best performance,
and performs less than 85% of the multiplications required for the other
methods for a majority of exponents.

1 Introduction

One of the fundamental operations in cryptography is exponentiation ae over
groups such as Z∗

p,Zn, general finite fields, and the group of points on an ellip-
tic curve [21,6,7]. The classical approach to performing this task is the binary
method, and the complexity of the exponentiation is usually measured in terms
of the number of squarings and multiplications required to determine ae. Let
e = en−1en−2 · · · e1e0 be an n-bit exponent, ei ∈ {0, 1}, 0 ≤ i < n, and let
w(e) =

∑n−1
i=0 ei be the weight of e. A simple analysis of the binary method

shows that s squarings and w(e)− 1 multiplications are required, where s is the
index of the most significant bit in e. Many general exponentiation algorithms of-
fer complexity improvements over the binary method include the sliding-window
method ([18,4,11] for example), signed-digit representations [20,19,16,13,23], the
signed-window method [17], Lempel-Ziv recoding [24], and the string replace-
ment method [8]. The reader is advised to see [18] for a thorough survey.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 375–388, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

376 Luke O’Connor

The common approach of these and other methods is to ‘collect’ exponent bits
according to some rule for reducing the weight of e, hence reducing the number
of required multiplications. For example, k consecutive bits are collected to form
a single digit in the 2k-ary method [15], and the binary signed-digit method
[8] replaces runs of two or more 1’s with just two bits, one signed and one
unsigned. We will refer to these and other rules for reducing the weight of e as
a recoding rule. For a given recoding rule A let ēA = ētēt−1 . . . ē1ē0 be the result
of applying A to e, and let wA(ē) =

∑t
i=0[ēi 6= 0] denote the recoded weight

of ēA. Once the recoding rule is applied, a variant of the b-ary method (b not
necessarily equal to 2k) can be used to complete the exponentiation, potentially
after some precomputation has been done. In practice, the exponent recoding
and arithmetic operations of the exponentiation are interleaved (see [18] for
examples of specific algorithms).

To analyse the computational saving of recoding e according to rule A, we
are required to examine the distribution of wA(ē), and also the cost of any
precomputation implied by A. For the 2k-ary method, wA(ē) is approximately
binomial with parameters b(n/k, (2k − 1)/2k), and it is therefore reasonably
understood. It is surprising however that in general other recoding methods
are discriminated between solely on the basis of E[(wA(ē)] and maxe wA(ē),
the average and worst case weight recodings respectively (see [17,8,23] for such
comparisons). We assert that E[(wA(e)] and maxe wA(e) provide information
about the distribution of wA(e), but without second order statistics, such as the
variance, the accuracy and usefulness of this information is uncertain.

In a recoding rule A that produces ēA = ētēt−1 . . . ē1ē0 from e, often the
defining properties of the ēi are quite simple, such as ēi = 01k (a run of 1’s
terminated by a 0, k ≥ 2) used in signed-digit recoding for example. This reflects
the requirement that the recoding rule must be efficient, and also that simple
recoding rules can be effective in reducing the cost of exponentiation. For many
recoding rules of practical interest, the ēi can be represented as elements of a
specified regular language [10], implying that the recoding can be performed by
an appropriate deterministic finite automata (DFA). For example, the recoding
rules presented in [19,17] are analysed in terms of their respective recoding DFAs.

The main contribution in this paper is to propose a framework for analysing
the weight distribution of recoding rules which can be described by regular lan-
guages. For a recoding rule A, the basis of our analysis is to define a bivariate
generating function (bgf) GA(x, z) =

∑
n,m≥0 an,mzmxn such that

Pr(wA(ē) = m | #e = n) = am,n/2n,

where #e is the bit length of e. Thus Ωn = {m | am,n 6= 0, 0 ≤ m ≤ n} and
Pr(Xn = m) = am,n/2n, will be the probability space describing the distribution
of weights for n-bit exponents recoded according to A. For the binary method
(BM), the relevant bgf (derived below) is

GBM (x, z) =
1

1 − (xz + x)
=

1
1 − x(1 + z)

=
∑
n≥0

xn
∑
m≥0

(
n

m

)
zm (1)

An Analysis of Exponentiation Based on Formal Languages 377

which indicates that the weights are distributed binomially, as expected. In gen-
eral we will derive GA(x, z) from a A by considering the recoding rules prescribed
by A as being performed by a DFA, pass to regular languages, and then enu-
merate the set of n-bit exponents whose recoded weight is m using standard
combinatorial methods (see [22, p.377] or [3, p.342] for example). This analysis
technique covers many recoding methods of practical interest, but, for example,
does not include the Lempel-Ziv exponentiation method of Yacobi [24], since in
this case the ēi are produced by the recoding are non-regular (a context-free
grammar would be required).

To demonstrate the generality of this approach, we analyse the weight distri-
bution of recoded exponents for the 2k-ary method (§3), sliding window method
(§4) and the optimal signed-digit method (§5). We analyse the 2k-ary method as
it provides an obvious improvement over the binary method, and its analysis is
instructive to the bgf approach. The sliding window method was selected since no
satisfactory analysis exists (see [11,14] for partial results), and yet it is described
as ‘the recommended method’ for general exponentiation [18, p.617]. We also se-
lected the optimal signed-digit method[8] for analysis since this method and its
variants are often suggested for performing elliptic curve scalar multiplication,
since group inversion is essentially free [19,16,17,23]. For the 2k-ary (k, TKM),
k-bit sliding window (k, SW), and optimal signed digit (OSD) methods the bgfs
for weight are as follows:

Gk,TKM (x, z) =
z
(

1−2kxk

1−2x − 1−xk

1−x

)
+ 1−xk

1−x

1 − x(2k − 1)xk − xk
, (2)

Gk,SW (x, z) =
1 − 2x + zx − zxk2k−1

(1 − x − zxk2k−1)(1 − 2x)
, (3)

GOSD(x, z) =
1 − x + xz + −2zx2 + x2z2

1 − 2x + x2 − 2zx2 + 2zx3
. (4)

Using standard transformations on bgfs we are able to obtain the numerical
values of E[wA(ē)] and Var[wA(ē)] for each bgf from (2) - (4), and thus make
comparisons on the number of required multiplications for each method. Since
the TKM approximates the binomial distribution b(n/k, (2k − 1)/2k), the ex-
pectation and variance of wk,TKM (ē) can be approximated accurately. Similar
computations for the sliding window method are difficult, but we have been
able to show by direct calculation that E[wk,SW (ē)] ∼ n/(k + 1) + k(k−1)

2(k+1)2

for n ∈ {512, 1024}, k ∈ {2, 3, . . . , 6}. We currently have no expression for
Var[wk,SW (ē)] but we note that direct calculations show it to be small (for ex-
ample less than 7 for 6-bit windows on 1024-exponents), and decreasing with k.
The expectation and variance the OSD method can be analysed exactly, mainly
because there is no window parameter k to complicate the analysis. We prove
that E[wOSD(ē)] = n

3 + 4
9 − 4(−1)n

9·2n , and Var[wOSD(ē)] = 2n
27 + 14

81 + 2n
27·2n + o(1).

The paper is organised as follows. In §2 we review some concepts of regular
languages, and give the principal enumeration theorems. In §3 we derive the bgfs

378 Luke O’Connor

for the binary and 2k-ary method, demonstrating our method of enumeration. In
§4 we analyse the sliding window method, and then in §5 we analyse the optimal
signed digit method. Conclusions and open problems are presented in the last
section.

2 Regular Expressions and Generating Functions

Regular expressions are defined recursively [10] as follows: if R and S are regular
expressions then so is R+S (union), RS (concatenation) and R∗ (Kleene closure)
where R∗ =

∑
k≥0 Rk = ε + R + RR + RRR + · · · . Also let rk denote the

concatenation of r with itself k times, and let r+ = r∗ − ε. Over a binary
alphabet we will call 1k a k-run, k ≥ 1, and any word ω that is a k-run will also
be simply referred to as a run.

A regular expression R generates words ω = w1w2 · · ·wn, wi ∈ ∆, and ω is
said to have length n, written as #ω = n. The set of all words generated by the
regular expression R, denoted by LR, is called the regular language generated, or
given, by R. Let Ln

R ⊆ LR denote the set of words in LR of length n ≥ 0. We will
say that the (ordinary) generating function GR(x) =

∑
n≥0 anxn enumerates LR

by length if an = #Ln
R for all n ≥ 0. Let [xn] be the operator that extracts the

coefficient of xn, so that [xn]GR(x) = an. It is clear that the regular expression
R = (1+0)∗ generates the language LR which is the set of all binary strings, and
since |Ln

R| = 2n, LR is enumerated by the geometric series GR(x) = 1/(1 − 2x).
The key property that permits GR(x) to be derived from R directly is given in
the next definition.

Definition 1. A regular expression R is unambiguous if there is only one way
for R to generate each ω ∈ LR. 2

For example (1 + 0)∗ is unambiguous, but (1 + 0 + 10)∗ is ambiguous since the
string ω = 10 can be generated by concatenating 1 and 0, or simply selecting
10. Since it is known that any regular language can be generated by an unam-
biguous regular expression [22, p.378], the following theorem due to Chomsky
and Schutzenberger [5] will be our main enumeration tool.

Theorem 2. Let R and S be unambiguous regular expressions, that are enu-
merated by the gfs GR(x) and GS(x). Then if R + S, RS and R∗ are also
unambiguous, GR(x) + GS(x) enumerates R + S, GR(x)GS(x) enumerates RS,
and 1/(1 − GR(x)) enumerates R∗. 2

Recall that our goal is to determine the bgf GA(x, z) =
∑

n,m≥0 an,mzmxn

such that am,n is the number of n-bit exponents recoded to weight m by algo-
rithm A. Fortunately Theorem 2 can also be applied to these bgfs since for the ex-
ponent recoding algorithms under consideration there exists a representation of
the algorithms in terms of regular expressions for which w(R+S) = w(R)+w(S)
and w(RS) = w(R)w(S). We restate this result formally as a corollary to The-
orem 2.

An Analysis of Exponentiation Based on Formal Languages 379

Corollary 3. Let R and S be unambiguous regular expressions, that are enu-
merated by the bgfs GR(x, z) and GS(x, z). Then if R + S, RS and R∗ are
also unambiguous, w(R + S) = w(R) + w(S), and w(RS) = w(R)w(S) then
GR(x, z) + GS(x, z) enumerates R + S, GR(x, z)GS(x, z) enumerates RS, and
1/(1 − GR(x, z)) enumerates R∗. 2

An advantage of using GA(x, z) for enumeration is that the expectation and
variance of wA(ē) can be directly determined from manipulating GA(x, z). Using
standard operations on bgfs (see for example [22, p.138]) we have that

E[wA(ē)] = [xn]
(

∂GA(x/2, z)
∂z

∣∣∣∣
z=1

)
, (5)

Var[wA(ē)] = [xn]
(

∂2GA(x/2, z)
∂2z

∣∣∣∣
z=1

+
∂GA(x/2, z)

∂z

∣∣∣∣
z=1

)
(6)

−
(

[xn]
(

∂GA(x/2, z)
∂z

∣∣∣∣
z=1

))2

,

where [xn]G(x) is the coefficient of xn in G(x). Thus E[wA(ē)] and Var[wA(ē)]
can be extracted by several differentiations of GA(x, z) with respect to z, and
determining the coefficient of xn after setting z = 1.

3 The Binary and 2k-ary Methods

As examples of the techniques presented in the previous section, we now derive
GBM (x, z) given in (1) for the binary method, and also Gk,TKM (x, z) for the
2k-ary method given in (2). First observe that the binary method processes the
exponent bit-by-bit, so the relevant regular expression is R = (1 + 0)∗, which
clearly generates all binary strings unambiguously. Second, marking (1 + 0) for
length and weight gives zx+x, and Corollary 3 indicates that R is enumerated by
GBM (x, z) = 1/(1−(zx+x)), as shown in (1). Though the 2k-ary method (TKM)
is a natural extension of the binary method, the derivation of Gk,TKM (x, z) is
more complicated than that of GBM (x, z).

Theorem 4. Let an,m be the number of binary strings of length n for which
the TKM-recoding using k-bit windows has weight m, 0 ≤ m < n. Then

Gk,TKM (x, z) =
∑

n,m≥0

an,mxnzm =
z
(

1−2kxk

1−2x − 1−xk

1−x

)
+ 1−xk

1−x

1 − x(2k − 1)xk − xk
(7)

Proof. Consider the following regular expression

R = R∗
1R2 =

(
(1 + 0)k

)∗(
ε +

k−1∑
i=1

1(1 + 0)i

)
.

380 Luke O’Connor

n k E[wk,TMK(ē)] Var[wk,TMK(ē)] 0.50 0.60 0.75 0.90 0.95 0.99

512 3 149.5 18.8 7 7 9 14 20 44

512 4 120 7.5 4 5 6 9 13 28

512 5 99.6 3.3 3 3 4 6 9 19

512 6 84.4 1.5 2 2 3 4 6 13

1024 3 298.8 37.5 9 10 13 20 28 62

1024 4 240 15 6 7 8 13 18 39

1024 5 198.6 6.2 4 4 5 8 12 25

1024 6 168.3 2.7 3 3 4 6 8 17

Table 1. The 2k-ary encoding distributions for 512- and 1024-bit
exponents. The columns show the value of α(wk,TMK (ē), p), p ∈
{0.50, 0.60, 0.75, 0.90, 0.95, 0.99}.

R∗
1 generates all binary k-bit windows repeatedly, while R2 generates all binary

strings of length less than k. R1 is marked for length and weight as

GR1(x, z) = z(2k − 1)xk + xk (8)

which denotes that all windows have length k, and all windows except one (the
all-zero window) cost one multiplication in TKM. The marking for R2 is as
follows

GR2(x, z) = z

(
1 − 2kxk

1 − 2x
− 1 − xk

1 − x

)
+

1 − xk

1 − x
. (9)

Note that (1 − 2kxk)/(1 − 2x) − (1 − xk)(1 − x) is the number of binary strings
of length less than k that are niether empty or all-zero. These strings each cost
a multiply in the TKM. The (1 − xk)/(1 − x) empty or all-zero strings cost no
multiplies. The theorem follows from simplifying GR1(x, z)GR2(x, z). 2

Using (5) and (6), both E[wk,TKM (ē)] and Var[wk,TKM (ē)] can be determined
for various values of k and n using a symbolic computation package (we have
elected to use Maple [1]). Recall that Chebyshev’s inequality bounds the de-
viation of a random variable X from its mean µ in terms of its variance σ2:
Pr(|X − µ| ≥ d) ≤ σ2/d2. Then define α(X, p) as

α(X, p) = min
d

[
σ2

d2
< (1 − p)

]
(10)

which states that d is the smallest for which Pr(|X − µ| < d) > p according
to bounds derived by Chebyshev’s inequality. Table 1 shows the distribution of
TKM recoding weights for various value of k for 512- and 1024-bit exponents,
and also the deviations α(wk,TKM (ē), p) for several probabilities p.

An Analysis of Exponentiation Based on Formal Languages 381

4 The Sliding Window Representation

The sliding-window method [4,11] is a variant of the b-ary method [15], and is
the ‘recommended method’ for general exponentiation [18, p.617]. When b = 2k,
the 2k-ary method can be considered as parsing an exponent e into adjacent
k-bit windows, where the window covering the least significant bit may be less
than k bits. The idea of the sliding-window method is to select the placement
of each k-bit window so that its most and least significant bit are equal to
one. The advantage of such a partition over the 2k-ary method is twofold: first
the number of windows is expected to be reduced as runs of zeroes may occur
between consecutive windows, and secondly, the amount of precomputation is
halved as the windows only represent odd powers. We now derive Gk,SW (x, z),
the bgf for the sliding window encoding of exponents using k-bit windows.

Theorem 5. Let an,m be the number of binary strings of length n for which
the SW-recoding using k-bit windows has weight m, 0 ≤ m < n. Then

Gk,SW (x, z) =
∑

n,m≥0

an,mxnzm =
1 − 2x + zx − zxk2k−1

(1 − x − zxk2k−1)(1 − 2x)
. (11)

Proof. Consider the following regular expression

R = R∗
1R2 =

(
0 + 10k−1 +

k−2∑
i=0

1(0 + 1)k−2−i10i

)∗(
ε +

k−2∑
i=1

1(1 + 0)i

)
.

R∗
1 generates words of length k that start and end with 1, and also the single

word 0. Clearly R∗
1 then generates all words corresponding to k-bit windows

separated by runs of zeroes. R2 generates either the empty string or a word
beginning with 1, of length less than k, which corresponds to the case where the
last there are not k−1 bits following the most significant bit of the last window.

We now mark R1 for length and weight: 0 is marked x, 10k−1 is marked zxk

meaning it has length k and corresponds to one nonzero digit in the recoding,
and 1(0 + 1)k−2−i10i is similarly marked as zxi+2(x + x)k−2. Using the same
rules for R2 we have that

GR1(x, z) = x + zxk + zx2
k−2∑
i=0

(x + x)k−2

(x + x)i
= x + zxk + zxk2k−2

(
2 − 22−k

)
,

GR2(x, z) = 1 + zx

(
1 − xk−12k−1

1 − 2x

)
.

The theorem follows from simplifying GR1(x, z)GR2(x, z). 2

Using α(X, p) from (10) we can again bound the distribution of weights, which
are given in Table 2 for 512-, 768- and 1024-bit exponents. Notice that the ex-
pectations are very close to n/(k + 1), as previously observed by Hui and Lam

382 Luke O’Connor

n k n/(k + 1) E[wk,SW (e)] Var[wk,SW (e)] 0.50 0.60 0.75 0.90 0.95 0.99

512 4 102.4 102.6 8.3 5 5 6 10 13 29

512 5 85.33 85.6 4.8 4 4 5 7 10 23

512 6 73.14 73.4 3.1 3 3 4 6 8 18

512 7 64 64.3 2.1 3 3 3 5 7 15

1024 4 204.8 205.0 16.5 6 7 9 13 19 41

1024 5 170.67 170.9 9.6 5 5 7 10 14 31

1024 6 146.3 146.6 6.1 4 4 5 8 12 25

1024 7 128 128.3 4.1 3 4 5 7 10 21

Table 2. k,SW encoding distributions for 512- and 1024-bit exponents. The
columns show the value of α(wk,SW (ē), p), p ∈ {0.50, 0.60, 0.75, 0.90, 0.95, 0.99}.

[11], and that the variances are quite small. We now consider the case of k = 5
explicitly, which is of interest since it is the optimal window size for the 2k-ary
method on 512-bit exponents.

Theorem 6. For a random n-bit exponent and 5-bit windows

E[w5,SW (ē)] ∼ n

6
+

5
18

, Var[w5,SW (ē)] ∼ n

108
+

35
324

. (12)

Proof. Taking the partial derivative of Gk,SW (x, z) with respect to z, setting
k = 5, and expanding with partial fractions we find that

∂G5,SW (x, z)
∂z

∣∣∣∣
z=1,k=5

=
1

6(1 − 2x)2
+

1
9(1 − 2x)

+
5 + 3x − 2x2 − 8x3

8x4 + 4x3 + 2x2 + x + 1

=
∑
n≥0

(n + 1)(2x)n

6
+
∑
n≥0

(2x)n

9
+
∑
n≥0

O(1.77n) (13)

where 1.77 is the complex root with largest modulus in x4 + x3 + 2x2 + 4x + 8,
which is the reflected polynomial [9, p.325] of 8x4 + 4x3 + 2x2 + x + 1. The
second derivative with respect to z at z = 1, k = 5 has the partial fraction
decomposition

∂2G5,SW (x, z)
∂2z

∣∣∣∣
z=1,k=5

=
∑
n≥0

(n + 1)(n + 2)(2x)n

36
−
∑
n≥0

4(n + 1)(2x)n

27

+n ·
∑
n≥0

O(1.77n).

Thus using (5) and (6), the variance is asymptotic to n/108 + 35/324. 2

Using similar computations as in Theorem 6 we have verified the following the-
orem.

Theorem 7. For k in the range 2 ≤ k ≤ 10, E[wk,SW (ē)] ∼ n/(k+1)+ k(k−1)
2(k+1)2 .

An Analysis of Exponentiation Based on Formal Languages 383

We are currently working on extending the proof of the above theorem to all
k and n, which involves proving certain terms in the partial fraction expan-
sion of E[wk,SW (ē)] tend to zero with n. At present we have no expression for
Var[wk,SW (ē)], but note that in general it is small, meaning that the distribution
is concentrated around its mean. For example, expanding G5,SW (x, z) directly
for 512-bit exponents shows that 99.6% of exponents will be recoded to a weight
that lies with ±6 of E[w5,SW (ē)]. Similarly, 99.998% of 512-bit exponents are
recoded to within ±10 of E[w5,SW (ē)].

5 Signed-Digit Representations

A signed-digit representation of the number e in base b is of the form e =∑d
i=0 aibi where ai ∈ {0,±1,±2, . . . ,±(b − 1)}, implying that binary numbers

are consequently encoded using the digits {0, 1,−1 = 1̄}. In general, the signed-
digit representation of a number for a fixed base is not unique, and even the
encoding of minimal weight need not be unique. An algorithm for producing
minimal a weight signed-digit encoding for a general base b is given by Arno and
Wheeler [2].

Working with negative exponents requires group inversions, which can be
costly over some groups if the appropriate inverses cannot be precomputed.
On the other hand, signed-digit representations are particularly attractive for
arithmetic over elliptic curves, since they correspond to addition-subtraction
chains, and point addition and subtraction on cryptographic curves have the
same cost in terms of group operations [19,16,17,23].

Definition 8. Let e =
∑d

i=0 ai2i, ai ∈ {0, 1,−1 = 1̄} be a minimal weight
signed-digit encoding of e. The encoding is called sparse if no two consecutive
digits ai, ai+1 are both nonzero.

Jedwab and Mitchell [12] prove that sparse encodings are unique and have min-
imal weight. The algorithm in Figure 1 converts e to a sparse encoding [12] by
repeatedly applying the identity 2k+1 − 1 =

∑k
i=0 2k. This guarantees spareness

since adjacent bits are encoded as 10 · · ·01̄, and for this reason sparse exponents
are also said to be in nonadjacent form [23]. We will refer to exponents recoded
according to Figure 1 as Optimal Signed Digit encodings, or OSD recodings.

Asymptotic results indicate that the weight of an OSD-encodings approaches
n/3 for a random n-bit exponent [13,16,2]. It was only recently (1996) that the
exact analysis was given by Gollman, Han and Mitchell [8] who proved that the
expected weight is n/3− 4/9− 4(−1)n

9·2n . Previously, Arno and Wheller [2] exhibit
a Markov chain P that mimics an OSD-encoding algorithms, whose limiting
distribution for the expected number of zeros in the resulting encoding is 2n

3 .
We now derive GOSD(x, z) from which we will determine the variance of an
OSD-encoding.

384 Luke O’Connor

i← 0 ;
while true

Find the largest j > (i + 1) such that e′ = ej , ej−1, . . . , ei = 01j−i ;
if there is no such j then exit ;
else replace e′ with 10j−i−21̄ ; i← j ;

od

Fig. 1. An algorithm for producing a sparse signed-digit representation of a
binary number.

Theorem 9. Let an,m be the number of binary strings of length n for which
the OSD-recoding has hamming weight m, 0 ≤ m < n. Then

GOSD(x, z) =
∑

n,m≥0

an,mxnzm =
1 − x + xz + −2zx2 + x2z2

1 − 2x + x2 − 2zx2 + 2zx3
. (14)

Proof. The proof is based on the following two regular expressions

R1 = 10(10)∗0,

R2 = ((10)+11+0 + 11+0)(1+0)∗0,

which describes how bits are propagated between runs of runs separated by at
most one 0. Further details are given in the Appendix. 2

Using α(X, p) from (10) we can again bound the distribution of weights, which
are given in Table 3 for 512-, 768- and 1024-bit exponents.

Theorem 10. For a random n-bit exponent, we have that

E[wOSD(ē)] =
n

3
+

4
9
− 4(−1)n

9 · 2n
, Var[wOSD(ē)] =

2n

27
+

14
81

+
2n

27 · 2n
+ o(1).

Proof. The partial fraction decomposition of the derivative of GOSD(x, z) at
z = 1 is

∂Gk,SW (x, z)
∂z

∣∣∣∣
z=1

=
1

3(1 − 2x)2
+

1
9(1 − 2x)

+
1

18(1 + x)
− 1

2(1 − x)
(15)

giving that E[wOSD(ē)] = n/3+4/9− 4(−1)n

9·2n . The partial fraction decomposition
for the second derivative GOSD(x, z) at z = 1 is

∂2Gk,SW (x, z)
∂2z

∣∣∣∣
z=1

=
2

9(1 − 2x)3
+

2
27(1 + x)2

− 8
27(1 − 2x)2

(16)

for which [xn]/2n is (n+1)(n+2)/9−8(n+1)/27− 2(n+1)
27·2n . Then Var[wOSD(ē)]

is determined directly from (6). 2

An Analysis of Exponentiation Based on Formal Languages 385

E[wOSD(ē)] Var[wOSD(ē)] 0.50 0.60 0.75 0.90 0.95 0.99

512 171.1 38.1 9 10 13 20 28 62

768 256.4 57.1 11 12 16 24 34 76

1024 341.7 76.0 13 14 18 28 39 88

Table 3. OSD-encoding distributions for 512-, 768- and 1024-bit exponents. The
columns show the value of α(wOSD(ē), p), p ∈ {0.50, 0.60, 0.75, 0.90, 0.95, 0.99}.

6 Comparisons and Conclusions

In this paper we have analysed three recoding rules for improved exponentiation
over the binary method. The analysis is thorough in that for the methods con-
sidered it is possible to extract both the expectation and variance of the random
variable describing the recoded weight. In several of the cases we have derived
closed forms for these statistics with respect to the recoding scheme.

It remains to draw comparisons between the three recoding methods. We
will only discriminate on the basis of the number of multiplications required
by a method, since the number of squaring required by the 2k-ary and sliding
window methods will be similar, and even taking squarings into account, the
OSD method is significantly slower. The 2k-ary method requires TMK(k) =
2k + wk,TKM (ē) − 4 multiplications [18], and the k-bit sliding window method
requires SW (k) = 2k−1+wk,SW (ē)−2 multiplications. The OSD method requires
at least wOSD(ē) − 1, not counting any precomputation.

For 512-bit exponents, the optimal window size is k = 5 for both the TKM
and SW methods, yielding an average multiplication cost of 127.8 and 100.3
respectively. Thus on average the optimal sliding window method only performs
about 78% of the multiplies that the optimal 2k-ary method performs. From
Tables 1 and 2, since TMK(k) ≤ 127.8 + 19 = 146.8 over 99% of the time, and
SW (k) ≥ 100.3 − 23 = 77.3 over 99% of the time, the optimal sliding window
method will perform over 52% of the multiplications required by the optimal 2k-
ary method for most exponents. For the majority of exponents SW (k) ≤ 100.3+
4 = 104.3, while the majority of exponents require TMK(k) ≥ 127.8−3 = 124.8
multiplications, meaning that the optimal sliding widow method requires less
than 84% of the multiplications required by the optimal 2k-ary method for a
majority of exponents. Further, from Table 3 we find that over 90% of OSD
exponents require at least 170 − 20 = 150 multiplications, implying that the
optimal sliding window only performs less than 70% of the multiplication that
OSD requires.

Similarly, the optimal sliding window method is superior to the optimal 2k-
ary method for 1024-bit exponents, as it is to the OSD method. In this case
the optimal window size for the sliding window method is k = 6, while it is
k = 5 for the 2k-ary method. Again from Tables 1 and 2, for the majority of
exponents SW (k) ≤ 177.3 + 4 = 181.3, while the majority of exponents have
TMK(k) ≥ 226.6− 4 = 224.6, meaning that the optimal sliding widow method

386 Luke O’Connor

requires approximately 80% of the multiplications required by the optimal 2k-ary
method for a majority of exponents. With high probability the optimal sliding
window method performs at least 60% of the multiplications required by the
optimal 2k-ary method, and with almost certainty performs less than 60% of the
multiplications required by the OSD method.

Even more accurate statements can be made if the generating functions are
expanded, and probabilities computed directly. In the case of 512-bit exponents
and k = 5 bit windows, both the sliding window and 2k-ary methods deviate
from their expected weights by more than ±10 with probability less than 10−4.
Further the majority of exponents deviate by less than ±1 from their expected
weight.

OSD recoded exponents tend to a weight of approximately n/3 on average.
This weight cannot be significantly reduced since smaller weight exponents de-
pend on longer runs of 1’s occuring in the original exponent, but a run of length
k has probability 2−k. One advantage of the OSD coding is that little space
is required for precomputation, and if inverses can be computed quickly then
the OSD method may be attactive, say for elliptic curve computations on smart
cards.

7 Appendix

Proof of Theorem 9.
Let e = e0e1 · · · en−2en−1, e =

∑n−1
i=0 ei2i, be an n-bit exponent, written left-to-

right as low order to high order bits. OSD-recoding can be interpreted as initially
partitioning an exponent e into blocks

e = b10j1b20j2 · · · 0jt−2bt−10jtbt, (17)

where jd ≥ 0, 1 ≤ d ≤ t. Each bi, 1 ≤ i < t, consists of runs separated by a
single zero, where the last run ends in two zeros, which for example might be 100
or 1011100. Also bt is similar except that the last run is followed by either one
or no zeroes. Note that since the bi and bi+1 are separated by at least two zeroes
then the recoding of bi and bi+1 according to Figure 1 will be independent.

The regular expression (1+0)∗0 generates words containing runs separated by
a single zero, where the last run ends in two zeros. The next step is to determine
if the trailing pair of zeros after bi, 1 ≤ i < t, is encoded as 10 or 00. In the first
case we will say that a carry has propagated to the second most significant zero,
or more simply, that a carry is present bi. The main observation is that a carry
will be present if and only if bi contains 110. We define the following two regular
expressions to detect the presence of a carry:

R1 = 10(10)∗0,

R2 = ((10)+11+0 + 11+0)(1+0)∗0,

Here R1 generates words with no carry, and R2 generates words with carry (110
is present). Thus R3 = (0 + R1 + R2)∗ generates all blocks in (17) except bt.

An Analysis of Exponentiation Based on Formal Languages 387

Note that the OSD-encoding of each bi is length preserving and if #bi = k the
it is enumerated as zmxk where m = #(runs in bi) + [110 is present in bi]. The
gfs for R1 and R2 can be derived directly as

GL1(x, z) =
zx3

1 − zx2
,

GL2(x, z) =
zx3

1 − x

(
1 +

zx2

1 − zx2

)
1

1 − (zx2)/(1 − x)
· xz.

and GL3(x, z) = 1/(1−x−GL1(x, z)−GL2(x, z)). It remains to enumerate block
bt which is generated by the regular expression R4 = (1+0)∗1∗. Expanding R4

so that it can be marked for length and weight we obtain

R4 = (10)∗(ε + 1 + 11) + 110+(1+0)∗1∗ + (10)+11+0(1+0)∗1.

R4 is similar to R3, and GL4(x, z) is derived in a manner similar to GL3(x, z).
The theorem follows from simplifying GL4(x, z)GL6(x, z).

2

References

1. See the Maple homepage at http://www.maplesoft.com.
2. S. Arno and F. Wheeler. Signed digit representations of minimal hamming weight.

IEEE Transactions on Computers, 42(8):1007–1010, 1993.
3. E. A. Bender and S. G. Williamson. Foundations of Applied Combinatorics.

Addison-Wesley Publishing Company, 1991.
4. J. Bos and M. Coster. Addition chain heuristics. Advances in Cryptology, CRYPTO

89, Lecture Notes in Computer Science, vol. 218, G. Brassard ed., Springer-Verlag,
pages 400–407, 1990.

5. N. Chomsky and P. Schutzenberger. The algebraic theory of context-free languages.
In P Braffort and North Holland Hirchberg, D., editors, Computer programming
and formal languages, pages 118–161, 1963.

6. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):472–492, 1976.

7. T. ElGamal. A public key cryptosystem and signature system based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):473–481, 1985.

8. D. Gollman, Y. Han, and C. Mitchell. Redundant integer representations and fast
exponentiation. Designs, Codes and Cryptography, 7:135–151, 1996.

9. R. L. Graham, D. E. Knuth, and O. Patshnik. Concrete Mathematics, A Founda-
tion for Computer Science, First Edition. Addison Wesley, 1989.

10. J. Hopcroft and J. Ullman. An Introduction to Automata, Languages and Compu-
tation. Reading, MA: Addison Wesley, 1979.

11. L. Hui and K.-Y. Lam. Fast square-and-multiply exponentiation for RSA. Elec-
tronics Letters, 30(17):1396–1397, 1994.

12. J. Jedwab and C. Mitchell. Minimum weight modified signed-digit representations
and fast exponentiation. Electronics Letters, 25:1171–1172, 1989.

388 Luke O’Connor

13. C. K. Ko̧c. High-radix and bit encoding techniques for modular exponentiation.
International Journal of Computer Mathematics, 40:139–156, 1991.

14. C. K. Ko̧c. Analysis of sliding window techniques for exponentiation. Computers
and Mathematics with Applications, 30(10):17–24, 1995.

15. D. E. Knuth. The Art of Computer Programming : Volume 2, Seminumerical
Algorithms. Addsion Wesley, 1981.

16. N. Koblitz. CM curves with good cryptographic properties. Advances in Cryp-
tology, CRYPTO 91, Lecture Notes in Computer Science, vol. 576, J. Feigenbaum
ed., Springer-Verlag, pages 279–287, 1992.

17. K. Koyama and T. Tsuruoka. Speeding up elliptic curve cryptosystems using a
signed binary window method. In Advances in Cryptology, CRYPTO 92, Lecture
Notes in Computer Science, vol. 740, E. F. Brickell ed., Springer-Verlag, pages
345–357, 1992.

18. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC press, 1996.

19. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theoretical Informatics and Applications, 24(6):531–
544, 1990.

20. G. Reitwiesener. Binary arithmetic. In F. L. Alt, editor, Advances in Computers,
pages 232–308, 1960.

21. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

22. R Sedgewick and P. Flajolet. An introduction to the analysis of algorithms.
Addison-Wesley Publishing Company, 1996.

23. J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.
Advances in Cryptology, CRYPTO 97, Lecture Notes in Computer Science, vol.
1294, B. S. Kaliski ed., Springer-Verlag, pages 357–371, 1997.

24. Y. Yacobi. Exponentiating faster with addition chains. Advances in Cryptology,
EUROCRYPT 90, Lecture Notes in Computer Science, vol. 473, I. B. Damg̊ard
ed., Springer-Verlag, pages 222–229, 1991.

	Introduction
	Regular Expressions and Generating Functions
	The Binary and 2^k-ary Methods
	The Sliding Window Representation
	Signed-Digit Representations
	Comparisons and Conclusions
	Appendix

