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Abstract. Pseudorandom function tribe ensembles are pseudorandom
function ensembles that have an additional collision resistance property:
almost all functions have disjoint ranges. We present an alternative to the
construction of pseudorandom function tribe ensembles based on one-
way permutations given by Canetti, Micciancio and Reingold [7]. Our
approach yields two different but related solutions: One construction is
somewhat theoretic, but conceptually simple and therefore gives an eas-
ier proof that one-way permutations suffice to construct pseudorandom
function tribe ensembles. The other, slightly more complicated solution
provides a practical construction; it starts with an arbitrary pseudoran-
dom function ensemble and assimilates the one-way permutation to this
ensemble. Therefore, the second solution inherits important characteris-
tics of the underlying pseudorandom function ensemble: it is almost as
efficient and if the starting pseudorandom function ensemble is invert-
ible then so is the derived tribe ensemble. We also show that the latter
solution yields so-called committing private-key encryption schemes. i.e.,
where each ciphertext corresponds to exactly one plaintext — indepen-
dently of the choice of the secret key or the random bits used in the
encryption process.

1 Introduction

In [7] Canetti, Micciancio and Reingold introduce the concept of pseudorandom
function tribe ensembles. Informally, such tribe ensembles consists of pseudoran-
dom functions that have an independent public key in addition to the secret key.
Though this public key, called the tribe key, is independent of the secret key, it
guarantees that any image/preimage pair commits to the secret key. More specif-
ically, for a random tribe key t there do not exist secret keys k 6= k′ and a value
x such that the functions determined by the keys k, t resp. k′, t map x to the
same value (except with exponentially small probability, where the probability
is taken over the choice of t). Canetti et al. [7] use such pseudorandom func-
tion tribe ensembles to construct perfectly one-way probabilistic hash functions.
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In contrast to ordinary one-way functions, such perfectly one-way probabilistic
hash functions hide all partial information about the preimage (secrecy), yet
finding a hash value together with distinct preimages is infeasible (collision re-
sistance). In [3] Canetti presents perfectly one-way hash functions based on a
specific number-theoretic assumption, namely the Decisional-Diffie-Hellman as-
sumption. Generalizing this result, Canetti, Micciancio and Reingold [7] show
that perfectly one-way functions can be constructed from any cryptographic hash
function (achieving secrecy statistically and collision resistance computationally)
or from any pseudorandom function tribe ensembles (with computational secrecy
and statistical collision resistance). In the latter case, the pseudorandomness of
the tribe ensemble provides secrecy and collision resistance follows from the
property of the tribe key. Canetti et al. [7] also prove that PRF tribe ensembles
exist if one-way permutations exist. Their construction is a modification of the
GGM-tree design of PRF ensembles [10] combined with a generalization of the
Goldreich-Levin hardcore predicate [12]. A sketch of this construction is given
in Appendix A. Here, we take a different approach which consists of two ele-
mentary and independent steps. First, we show that any one-way permutation
suffices to construct a PRF ensemble such that for distinct secret keys k, k′ the
functions determined by k and k′ map 1n to different values. We call such ensem-
bles fixed-value-key-binding as the key is determined by the function value for 1n

or, using a minor modification, for any other fixed value instead of 1n. Second,
we prove that fixed-value-key-binding PRF ensembles yield PRF tribe enembles.
After presenting a conceptually simple construction of fixed-value-key-binding
ensembles based on the GGM-tree design to the authors of [7], they pointed out
an improvement that led to the more practical solution which does not necessar-
ily involve the GGM-construction. Instead it works with a every PRF ensemble
by assimilating the one-way permutation to the given ensemble. This yields a
fixed-value-key-binding PRF ensemble and, in turn, a PRF tribe ensemble which
is almost as efficient as the starting PRF ensemble. Moreover, if the functions
of the ordinary ensemble are invertible then so are the functions of the tribe
ensemble. From a theoretical and practical point of view this gives us the best
of both worlds: As for the theory, we obtain a simple proof that the existence of
one-way permutations implies the existence of PRF tribe ensembles. For prac-
tical purposes, we present a construction where pseudorandomness is slightly
harder to prove, but which has nice properties. In both cases, the second step
deriving the tribe ensemble from the fixed-value-key-binding ensemble is iden-
tical. We give an outline of this part. It is a reminiscent of Naor’s statistically-
binding bit commitment scheme [17]. There, the receiver sends a random 3n-
bit string A to the committing party who applies a pseudorandom generator
G : {0, 1}n → {0, 1}3n to a random value r ∈ {0, 1}n and returns G(r)⊕A to
commit to 1 resp. G(r) to commit to 0. The receiver cannot distinguish both cases
with significant advantage because of the pseudorandomness of the generator’s
output. On the other hand, to open a commitment ambiguously the sender has to
find r, r′ such that G(r) = G(r′)⊕A. But # {G(r)⊕G(r′) | r, r′ } ≤ 22n, hence
A ∈ {G(r)⊕G(r′) | r, r′ } with probability at most 2−n (over the choice of A).
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This means that the commitment cannot be opened ambiguously with probabil-
ity at least 1−2−n. We adopt this idea to define our PRF tribe ensemble. Given a
fixed-value-key-binding PRF ensemble we define an appropriate fixed-value-key-
binding PRF ensemble F stretch with functions f stretch

k that stretch the input to a
sufficiently large output. We then show that there exists a value Ik (depending
on the secret key k) and a function XOR(t, Ik) of the tribe key t and Ik such
that from the key-binding property it follows that for different keys k, k′ and
random t the value XOR(t, Ik)⊕XOR(t, Ik′ ) is a uniformly distributed string
having the same length as the output of f stretch

k .1 In other words, XOR(t, Ik) is
an xor universal hash function [8] with argument Ik and description t. Define
the functions f t

k of the PRF tribe ensemble by f t
k(x) = f stretch

k (x)⊕XOR(t, Ik).
A collision f t

k(x) = f t
k′(x) for x, k 6= k′ implies

f stretch
k (x)⊕ f stretch

k′ (x) = XOR(t, Ik)⊕XOR(t, Ik′ )

Since the output length of the functions in F stretch is much bigger than the input
length and as XOR(t, Ik)⊕XOR(t, Ik′ ) is a random string for random t, collision
resistance of the tribe ensemble is obtained as in Naor’s bit commitment scheme.
Additionally, we will show that the pseudorandomness of the tribe ensemble
follows from the pseudorandomness of F stretch.

Finally, based on our PRF tribe ensemble, we present a committing private-
key encryption scheme, i.e., such that one cannot later open an encryption am-
biguously by pretending to have used a different secret key. Secure committing
public-key encryption systems can be derived for example from trapdoor per-
mutations using the Goldreich-Levin hardcore predicate. In fact, constructing
the opposite, public-key schemes that allow to open encryptions ambiguously,
is a very interesting problem, because such schemes yield multiparty protocols
secure against adaptive adversaries [5,6,4]. Given an arbitrary fixed-value-key-
binding PRF ensemble we present a straightforward solution for a committing
private-key system. Unfortunately, this scheme allows to deduce if two encryp-
tions have been generated with the same secret key; a drawback which schemes
based on PRF ensembles usually do not have. Therefore, we present another
committing system that does not have this disadvantage, and prove that this
scheme is secure against chosen ciphertext and plaintext attacks or, equivalent,
non-malleable.

2 Preliminaries

For sake of self-containment, we briefly recall basic definitions of pseudorandom
functions, pseudorandom generators, etc. See [11] for the underlying intuition.
At the end of this section, we repeat the GGM-construction and the definition of
pseudorandom function tribe ensembles. We present all definitions for uniform
adversaries only; replacing the term “polynomial-time algorithm” by “polyno-
mial circuit family” one easily obtains the nonuniform counterpart.
1 Actually, this string will be uniformly distributed in a sufficiently large subset of the

binary strings of the output length.
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A function δ(n) is called negligible in n if δ(n) < 1/p(n) for any positive poly-
nomial p(n) and all sufficiently large n. A polynomial-time computable function
f is one-way if for any probabilistic polynomial-time algorithm A the probabil-
ity Prob

[
A(1n, f(x)) ∈ f−1(x)

]
that A outputs a preimage of f(x) for random

x ∈ {0, 1}n is negligible in n. A one-way function f is a one-way permutation
if f permutes {0, 1}n for every n. A hardcore predicate of a one-way function
f is a polynomial-time computable predicate B such that for any probabilistic
polynomial-time algorithm A it holds that Prob[A(1n, f(x)) = B(x)] for ran-
dom x ∈ {0, 1}n is negligible in n. According to a result of Goldreich and Levin
[12] every one-way function can be modified to have a hardcore predicate. A
polynomial-time computable function G is a pseudorandom generator if there
exists some function `(n) such that `(n) > n and G(x) ∈ {0, 1}`(n) for all
x ∈ {0, 1}n and all n, and such that for any probabilistic polynomial-time algo-
rithm D the advantage |Prob[D(G(x)) = 1] − Prob[D(y) = 1]| is neglible in n,
where x is chosen at random from {0, 1}n resp. y from {0, 1}`(n). Pseudorandom
generators exist if and only if one-way functions exist [14]. A function ensemble
with key space K = {Kn}n∈IN, input length in(n) and output length out(n) is
a sequence F = {F (n)}n∈IN of function families F (n) = {fk}k∈Kn such that for
any k ∈ Kn the function fk maps bit strings of length in(n) to bit strings of
length out(n). A function ensemble is polynomial-time computable if the length
of the keys of K = {Kn} and in(n) are bounded by some polynomial in n and
if there exists a polynomial-time algorithm Eval such that Eval(k, x) = fk(x) for
all n, k ∈ Kn and x ∈ {0, 1}in(n). In the sequel we denote by R = {R(n)}n∈IN

the function ensemble that contains all functions g : {0, 1}in(n) → {0, 1}out(n);
here in(n) and out(n) and therefore the key space of R(n) will be understood
from the context. A polynomial-time computable function ensemble F (with key
space K and input/output length in(n) and out(n)) is a pseudorandom function
ensemble (PRF ensemble) if for any probabilistic polynomial-time algorithm D,
called the distinguisher, the advantage

∣∣Prob
[
Df (1n) = 1

] − Prob[Dg(1n) = 1]
∣∣

is negligible, where f is chosen at random from F (n) (by selecting a random key
from Kn) and g is a random function of R(n) (where each function in R(n) has
input/output length in(n) and out(n)). A PRF ensemble F with key space K
and input/output length in(n) = out(n) is called a pseudorandom permutation
ensemble (PRP ensemble) if fk is a permutation for any key k ∈ Kn and the
advantage

∣∣Prob
[
Df (1n) = 1

] − Prob[Dg(1n) = 1]
∣∣ is negligible for any prob-

abilistic polynomial-time algorithm D, where f is a random function of F (n)

and g is a random permutation with input/output length in(n) = out(n). A
PRP ensemble F is said to be a strong PRP ensemble if it even holds that
|Prob[Df,f−1

(1n) = 1] − Prob[Dg,g−1
(1n) = 1]| is negligible for any probabilistic

polynomial-time algorithm D.

Pseudorandom function ensembles can be constructed from any pseudoran-
dom generator via the GGM-tree design [10]. Let G denote a length-doubling
pseudorandom generator, i.e., with output length `(n) = 2n; such generators
can be constructed from any pseudorandom generators by modifying the output
length. Let G0(x) resp. G1(x) denote the left and right half of G(x) and define
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the function ensemble F with key space Kn = {0, 1}n and input/output length
in(n) = out(n) = n by fk(x) = Gxn(· · ·Gx2(Gx1(k)) · · · ). Here, x1, . . . , xn ∈
{0, 1} and x = x1; · · · ; xn is the concatenation of x1, . . . , xn. The function fk

can be described by a binary tree of depth n where the root is labeled with k and
each left (right) child of a node v is labeled with G0(label(v)) resp. G1(label(v)).
A value x ∈ {0, 1}n then determines a path from the root to some leaf and the
function value fk(x) equals the label of this leaf. Goldreich et al. [10] prove that
the derived ensemble F is pseudorandom.

A PRF tribe function ensemble with key space K = {Kn}n∈IN and tribe key
space T = {Tn}n∈IN is a function ensemble F = {{F (n)

t }t∈Tn}n∈IN of function
families F

(n)
t = {f t

k}k∈Kn such that {F (n)
tn

}n∈IN is a PRF ensemble for any
sequence {tn}n∈IN, tn ∈ Tn of tribe keys, and such that for a randomly chosen
tribe key t ∈ Tn the probability that there exist x ∈ {0, 1}in(n), k, k′ ∈ Kn

with k 6= k′ and f t
k(x) = f t

k′(x) is at most 2−n. The latter property is called
(statistical) collision resistance.

3 Constructing PRF Tribe Ensembles

We first show how to construct an PRF ensemble F bind such that fbind
k (1n) 6=

fbind
k′ (1n) for keys k 6= k′. Put differently, the function value at 1n commits to

the key. We therefore say that this ensemble binds the key (for a fixed value)
because once we have seen the value at 1n one cannot later pretend to have
used another key. Obviously, we can also take any other fixed value x0 instead
of 1n by setting f∗

k (x) = fbind
k (x⊕ x0 ⊕ 1n). We then use such a fixed-value-key-

binding PRF ensemble to derive a pseudorandom function (with tribe key t)
where f t

k(x) 6= f t
k′(x) for any x, k 6= k′ with probability 1 − 2−n over the choice

of t. This is achieved by using Naor’s idea as explained in the introduction. We
can even modify the construction to obtain a key-binding-and-invertible pseu-
dorandom function that binds the key and can be efficiently inverted given the
secret key. Particularly, this implies that f t

k(x) 6= f t
k′(x′) for (k, x) 6= (k′, x′) with

probability 1− 2−n, i.e., the function binds the key and the preimage with high
probability. This somewhat weaker property can also be derived extending the
universal hash function XOR(t, Ik) to take arguments x and Ik instead of Ik.
We discuss this construction at the end of the section. However, it is not clear
that this solution is efficiently invertible using the key, a requirement that we
need in Section 4 applying our construction to private-key encryption.

3.1 A Fixed-Value-Key-Binding PRF Ensemble

Clearly, a pseudorandom function ensemble with fk(1n) 6= fk′(1n) for k 6= k′

can be derived via the GGM-construction using a length-doubling pseudorandom
generator G which is one-to-one on the right half. In this case, the function value
at 1n is G1(· · ·G1(k)) and since G1 is one-to-one this yields different values for
different keys. According to a result by Yao [23] such a pseudorandom generator
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G where G1 is one-to-one can be constructed from any one-way permutation g
by setting

G(x) = B(x); B(g(x)); · · · ; B(g|x|−1(x)); g|x|(x)

Here, gi(x) = g(gi−1(x)) and g1(x) = g(x) and B denotes some hardcore predi-
cate of g. Obviously, G1(x) = g|x|(x) is one-to-one (in fact, it is a permutation).

Another construction of fixed-value-key-binding ensembles was proposed by
the authors of [7] after presenting the GGM-based approach to them. The ad-
vantage is that we use the underlying pseudorandom function as a black box
and merely add the length-doubling generator G (with G1 being one-to-one) on.
Particularly, instead of using the GGM-construction one can start with any PRF
ensemble. For instance, more efficient constructions of PRF ensembles based on
synthesizers [18] resp. on the Decisional-Diffie-Hellman assumption [19] suffice.
In practice, one can also use appropriate candidates like the forthcoming AES.

So let F start be an arbitrary PRF ensemble (the starting point). For simplicity,
we suppose that each function f start

k of F start,(n) maps n bits to n bits and that
the key length equals n, too. We discuss below how to patch other cases. Set
kb = Gb(k) for b ∈ {0, 1} and define the functions of F bind,(n) by

fbind
k (x) =

{
k1 if x = 1n

f start
k0 (x) else

Proposition 1. F bind is a fixed-value-key-binding PRF ensemble.

Proof. (Sketch) The proof follows by standard hybrid techniques. Given a dis-
tinguisher Dbind that distinguishes F bind and R with advantage δ(n) for infinitely
many n, we either obtain an algorithm that distinguishes the output of G from
random bits with advantage δ(n)/2 infinitely often or we derive an algorithm
that distinguishes F start and R with advantage δ(n)/2 for infinitely many n. Ob-
viously, F bind binds the key for the fixed value 1n because G1 is one-to-one. ut
Though F start might be a pseudorandom permutation ensemble, F bind does not
inherit this property in general. However, a slight modification works: swapping
the values that map to k1 and f start

k0 (1n) we let

fbind
k (x) =




k1 if x = 1n

f start
k0 (1n) if f start

k0 (x) = k1 and x 6= 1n

f start
k0 (x) else

(1)

It is easy to see that fbind
k is a permutation if f start

k0 is. Moreover, the inverse
of fbind

k is efficiently computable (given the key k) if f start
k0 has this property.

We remark that every PRF ensemble can be turned into a PRP ensemble [15];
see [20] for recent results. Yet, using the Luby-Rackoff transformation, the key
length of the derived permutation grows. This can be handled by stretching the
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output length of the generator G accordingly; it suffices that G is one-to-one on
the bits that replace the output at 1n. In particular, if the output length of f start

k0

is smaller than right half of G(k) then we can first stretch the output of f start
k0

at the cost of decreasing the input length slightly. We will use this technique
in the next section, too, so we omit further details here. The proof that the
ensemble F bind defined by equation (1) is pseudorandom is similar to the proof
of Proposition 1. It is also easy to show that F bind is a strong PRP ensemble if
F start is.

Proposition 2. If F start is a [strong] PRP ensemble then F bind as defined in
equation (1) is a fixed-value-key-binding [strong] PRP ensemble.

We remark that once the key is generated (by evaluating the pseudorandom
generator) computing fbind

k (x) is as fast as computing f start
k (x). Particularly, f start

k

may be any fast practical pseudorandom function candidate. In contrast, using
the GGM-based approach we have to apply n times a pseudorandom generator
which is one-to-one on the right half, e.g., based on a number-theoretic one-way
permutation like RSA.

3.2 PRF Tribe Ensembles from Key-Binding PRF Ensembles

Let F bind be a fixed-value-key-binding PRF ensemble (for the value 1n). In
another intermediary step we define a PRF ensemble F stretch that has input
length n−3, but stretches the output length to 5n. Define the functions f stretch

k :
{0, 1}n−3 → {0, 1}5n by

f stretch
k (x) = fbind

k (x000); · · · ; fbind
k (x011); fbind

k (x111)

Obviously, F stretch is a PRF ensemble if F bind is. Also note that computing f stretch
k

takes at most five evaluations of fbind
k ; but due to the common prefix one might

not need to carry out all evaluations of fbind
k from scratch and save time.

Now we are able to define our tribe ensemble F of functions f t
k : {0, 1}n−3 →

{0, 1}5n. The tribe key t = (t1, . . . , tn) consists of n uniformly and independently
chosen values ti ∈ {0, 1}4n×{0n}, i.e., ti is a random 4n-bit string filled up with
0-bits. Denote

Ik = fbind
k (1n) = rightmost n bits of f stretch

k (1n−3)

and let

XOR(t, Ik) =
⊕

i-th bit(Ik)=1

ti

Then we set

f t
k(x) = f stretch

k (x)⊕XOR(t, Ik) (2)

Note that once k and t are chosen, XOR(t, Ik) is also fixed. Therefore, evaluating
f t

k at some point x is quasi as efficient as computing f stretch
k (x). The proof that F
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is pseudorandom for any sequence of tribe keys is given below. We stress that the
pseudorandomness of F does not depend on the random choice of the tribe key.
See the discussion in [7]. Also note that if fbind

k is one-to-one (e.g., a permutation)
then f stretch

k (x) 6= f stretch
k (x′) resp. f t

k(x) 6= f t
k(x′) for x 6= x′.

Proposition 3. F is a PRF ensemble for any sequence of tribe keys.

Proof. (Sketch) The proof follows by standard simulation arguments. Given an
adversary D that distinguishes a random function of F and a randomly chosen
function from the ensemble R we obtain a distinguisher Dstretch that distinguishes
F stretch and R with the same advantage. Note that both D and Dstretch are given
an arbitrary tribe key t as input. For a function f : {0, 1}n−3 → {0, 1}5n let
f sim(x) = f(x)⊕XOR(t, I), where I denotes the rightmost n bits of f(1n−3).
Dstretch simulates D by answering all oracle queries x with f sim(x), where the
underlying oracle f of Dstretch is chosen from F stretch,(n) or R(n). If f is chosen
at random from F stretch then f sim is a random function of F . Assume that f is
a random function of R(n). It is easy to see that in this case any value f sim(x)
is distributed independently of the other function values. Hence, it suffices to
show that Probf

[
f sim(x) = y

]
= 2−5n for any x, y. This is clear for x 6= 1n−3.

Consider the case x = 1n−3. The rightmost n bits of f(x) are random bits and
the rightmost n bits of XOR(t, I) equal 0n. Hence, with probability 2−n we have
equality on these bits. The leftmost 4n bits of f(x) are random bits that are
independent of the other n bits. Therefore, the probability that these bits equal
the leftmost 4n bits of y ⊕XOR(t, I) is 2−4n and both probabilities multiply due
to the independence. ut

Recall that a PRF tribe ensemble is collision-resistant (in a statistical sense)
if there do not exist x and k, k′ such that k 6= k′ and f t

k(x) = f t
k′(x) except with

exponentially small probability (over the random choice of the tribe key). In our
case, we have Ik 6= Ik′ for k 6= k′ and a collision

f t
k(x) = f stretch

k (x)⊕XOR(t, Ik) = f stretch
k′ (x)⊕XOR(t, Ik′ ) = f t

k′(x)

implies

f stretch
k (x)⊕ f stretch

k′ (x) = XOR(t, Ik)⊕XOR(t, Ik′ ) = XOR(t, Ik ⊕ Ik′)

Because Ik ⊕ Ik′ 6= 0n, the value XOR(t, Ik ⊕ Ik′ ) is uniformly distributed in
{0, 1}4n×{0n} for fixed x, k 6= k′ and random t. By the union bound we conclude
that

Probt

[∃x, k 6= k′ s.t. f t
k(x) = f t

k′(x)
] ≤ 23n−3 · 2−4n ≤ 2−n

Thus we obtain:

Theorem 4. The ensemble F defined by equation (2) is a PRF tribe ensemble.

Clearly, we can lower the error probability of the collision resistance. For
example, to achieve an error of 2−4n we extend f stretch

k to 8n bits output and



440 Marc Fischlin

choose the ti’s at random from {0, 1}7n × {0n}. If, in addition to an extended
output length of at least 6n bits, we use a pseudorandom permutation F start then
we derive a pseudorandom function tribe ensemble F such that f t

k(x) 6= f t
k′(x′)

for (k, x) 6= (k′, x′) with probability at least 1 − 2−n (taken over the choice of
the tribe key only) and which is efficiently invertible given the secret key (for all
possible tribe keys); to invert a value y = f t

k(x) invert the rightmost n bits of y
under the starting pseudorandom function to obtain x111 and therefore x (note
that the rightmost n bits of XOR(t, Ik) equal 0n). We call such an ensembles
key-binding-and-invertible. Observe that the key-and-preimage-binding property
alone can be achieved by taking output length 8n bits, choosing 2n − 3 strings
ti from {0, 1}7n × {0n} and letting XOR(t, Ik, x) be the exclusive-or of the ti’s
for which the i-th bit of Ik; x equals 1.

4 Committing and Key-Hiding Private-Key Encryption

A well-known private-key encryption scheme based on PRF ensembles is given
by Enck(m, r) = (r, fk(r)⊕m), where k is the secret key, m is the message and r
is chosen at random. To decrypt a pair (r, c) compute m = Deck(r, c) = fk(r)⊕ c.
This encryption scheme is not comitting in general, i.e., for an encryption (r, c)
there might exist (k, m), (k′, m′) with m 6= m′ and Enck(m, r) = (r, c) =
Enck′ (m′, r). Conversely, we call a cryptosystem committing if for each cipher-
text c there exists a unique message m such that c must have been derived by
applying the encryption algorithm to m — this holds independently of the choice
of the secret key and the coin tosses used during the encryption process.

Before presenting the formal definition of committing schemes we sketch the
definition of a private-key cryptosystem. A private-key encryption scheme is a
triple (KGen, Enc, Dec) of probabilistic polynomial-time algorithms such that

– KGen on input 1n generates a random key k,
– Enc on input 1n, key k, message m (of some appropriate length) and ran-

domness r outputs a ciphertext c = Enc(1n, k, m, r),
– Dec(1n, k, Enc(1n, k, m, r)) = m.

Wlog. we assume that 1n is recoverable from k and therefore write Enc(k, m, r)
or Enck(m, r) instead of Enc(1n, k, m, r). Similarly for Dec.

Definition 5 (Committing Private-Key Encryption Scheme). A private-
key encryption scheme (KGen, Enc, Dec) is called committing if for any key k,
message m, randomness r and encryption c = Enck(m, r) there do not exist
k′, m′, r′ such that m 6= m′ and Enck′(m′, r′) = Enck(m, r).

Using a fixed-value-key-binding PRF ensemble the obvious solution Enck(m, r) =
(fk(1n), r, fk(r)⊕m) works. The drawback of this solution is that an eavesdrop-
per knows whenever the parties change the secret key. In some settings hiding
this fact might be crucial. For instance, if one party sends the new secret key by
encrypting it with the current one, then breaking this encryption by an exhaus-
tive search makes all the following messages visible to the adversary. Applying
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the key-and-preimage-binding PRF tribe ensemble of Section 3 we can over-
come this disadvantage. But before presenting our committing and key-hiding
scheme we formalize the notion of a key-hiding scheme. Let (KGen, Enc, Dec) be
a private-key encryption scheme and D be a probabilistic polynomial-time algo-
rithm. We consider two experiments. In the first experiment, we independently
execute KGen(1n) twice to obtain two keys k, k′. D is given 1n as input and is
allowed to query the probabilistic oracles Enck and Enck′ in the following way:
In the first part, D is allowed to obtain encryptions of messages of its choice by
querying the oracle Enck. Then it passes a message switch to the oracle Enck. It
continues to query for messages of its choice, but this time the answers are given
by the second oracle Enck′ . Finally, D outputs a bit, denoted DEnck,Enck′ (1n),
and stops. The second experiment differs only in the way the oracles are ini-
tialized. This time we let k′ = k, i.e., we do not change the keys. Denote by
DEnck,Enck(1n) the output.

Definition 6 (Key-Hiding Private-Key Encryption Scheme). A private-
key encryption scheme (KGen, Enc, Dec) is said to be key-hiding if for any prob-
abilistic polynomial-time algorithm D the value |Prob

[
DEnck,Enck′ (1n) = 1

] −
Prob

[
DEnck,Enck(1n) = 1

] | is negligible in n.

Actually, every secure2 scheme should “hide” the key, i.e., it should not reveal the
key. Otherwise it can be easily broken. However, Definition 6 demands even more.
For instance, an encryption scheme where each encryption leaks the Hamming
weight of the key with some probability that is not negligible does not hide the
key as defined above. Yet, the scheme may be secure.

We remark that we do not grant D access to the decryption oracles Deck and
Deck′ , respectively. Otherwise D could distinguish both cases easily: D encrypts
some message m with the first oracle, sends switch and tries to decrypt with the
second decryption oracle; this only yields m again if the keys have not changed.

We define the committing and key-hiding encryption scheme(KGencom, Enccom,
Deccom). Let F be a PRF tribe ensemble derived by the technique of Section 3.2
from a key-and-preimage-binding ensemble F bind. We assume that some trusted
party chooses a random tribe key t and publishes it or sends it to the partici-
pating parties, respectively. Hence, we do not achieve the committing property
of Definition 5 perfectly, but only with exponentially small error probability.
Abusing notations we will also call this derived scheme committing. Algorithm
KGencom(1n) selects a random k ∈ Kn. Let Enccom

k (m, r) = (f t
k(r), r ⊕m) where

m, r ∈ {0, 1}n−3. To decrypt a pair (y, c) compute r from the rightmost n bits
of y by applying the inverse of fbind

k . Finally, recover m by m = r⊕ c.

Proposition 7. The encryption scheme (KGencom, Enccom, Deccom) is a commit-
ting and key-hiding encryption scheme.

Proof. (Sketch) It remains to show that the scheme is key-hiding. But this follows
directly from the pseudorandomness of F bind. ut
2 Here, security does not refer to any formal definition. It is used in a rather liberal

sense.
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It is quite easy to see that this scheme is polynomially secure as defined in [13].
We sketch this and other security notions in Appendix B. In fact, it is not hard
to show either that it is even secure against lunchtime attacks [21].

Proposition 8. The scheme (KGencom, Enccom, Deccom) is a committing and key-
hiding private-key encryption which is secure against lunchtime attacks.

The proof is omitted from this extended abstract.
The encryption scheme can be easily broken with a chosen ciphertext and

plaintext attacks (see [22] or Appendix B) because given a ciphertext (y, c) the
adversary can query the decryption oracle for (y, c⊕ 1|c|) and easily recover
m from the answer. Using an idea of Bellare and Rogaway [2] we can turn the
scheme above into an encryption scheme (KGenccp, Encccp, Decccp) which is secure
against chosen ciphertext and plaintext attacks. To do so, we let

Encccp
k (r, m) = (f t

k(r; m), r ⊕m)

for m, r ∈ {0, 1}n/2−1. Defining Decccp is straightforward. Loosely speaking,
appending m to the argument r of the pseudorandom function serves as a proof
that one knows the values r, m explicitely. Again, the formal proof is omitted.

Proposition 9. The committing and key-hiding private-key encryption scheme
(KGenccp, Encccp, Decccp) is secure against chosen ciphertext and plaintext at-
tacks.

Recently, Dolev et al. [9] showed that (semantic) security against chosen ci-
phertext and plaintext attacks implies non-malleability. Hence, our scheme is
non-malleable as well.
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A The CMR PRF Tribe Ensemble — In a Nutshell

We sketch the construction of PRF tribe ensembles from one-way permutations
given in [7]. See their paper for discussions and proofs. Let g′ be a one-way
permutation over {0, 1}6n and assume that g′(x; r) = g(x); r for x, r ∈ {0, 1}3n.
Furthermore, we can assume wlog. that g has no cycles of length less than
12n. Let p be a non-constant polynomial over GF[26n] and define a hardcore
predicate Bp : {0, 1}6n → {0, 1} of g′ by the inner product Bp(x; r) = p(x) · r of
p(x), r ∈ {0, 1}3n. Then, for any polynomial p, we construct a length-doubling
pseudorandom generator by

Gp(x; r) = Bp(x; r); Bp(g(x); r); · · · ; Bp(g6n−1(x); r); g6n(x); r

Denote by G0
p(x; r) and G1

p(x; r) the left and right half of Gp(x; r). Additionally,
we let G : {0, 1}n → {0, 1}6n denote an arbitrary pseudorandom generator which
is one-to-one on the right half.

The tribe key t consists of n random, non-constant polynomials p1, . . . , pn

of degree less than 6n. Then let

f t
k(x) = Gxn

pn
(· · ·Gx1

p1
(G(k)))

That is, f t
k is a GGM-tree using pseudorandom generators based on the modified

Goldreich-Levin hardcore predicate.

B Security Notions of Private-Key Encryption Schemes

In this section we recall the notions of polynomial security [13], security against
lunchtimes attacks [21] resp. against chosen ciphertext and plaintext attacks [22].
See [1] for further security definitions for symmetric schemes. We refer the reader
to [9] for a definition of non-malleable schemes, a notion that turned out to be
equivalent to security against chosen ciphertext and plaintext attacks.

Consider the following attack on a private-key cryptosystem. Let (F, D) be a
pair of probabilistic polynomial-time algorithms. First, a secret key k is chosen
according to KGen(1n) and kept secret from F and D. Then the message finder
F gets the input 1n and outputs two messages m0, m1. Let b ∈ {0, 1} be a
fixed bit. A ciphertext c = Enck(mb, r) for randomness r is generated. Now D
is given input 1n, m0, m1 and c and is supposed to predict b, i.e., to distinguish
encryptions of m0 and m1. Let δb

F,D(n) denote the probability that D outputs
1 if mb is encrypted. The probability is taken over all random choices, including
the internal coin tosses of F and D.

An encryption scheme is polynomially secure if D cannot distinguish an en-
cryption of m0 from an encryption of m1 significantly. More formally, it is poly-
nomially secure if for all (probabilistic polynomial-time) adversary pairs (F, D)
the value |δ0

F,D(n) − δ1
F,D(n)| is negligible in n.
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A lunchtime attack is similar to the aforementioned attack, but F is also
allowed to adaptively query the encryption/decryption oracle for plaintexts and
ciphertexts of its choice before outputting m0, m1, and D is given the history of
this query/answer sequence as additional input. An encryption scheme is secure
against lunchtime attacks if it still holds that |δ0

F,D(n) − δ1
F,D(n)| is negligible in

n for all (probabilistic polynomial-time) adversary pairs (F, D).
A chosen ciphertext and plaintext attack is a lunchtime attack where D is

also allowed to adaptively query the encryption/decryption oracle — though D
is of course not allowed to decipher the challenge c. Again, an encryption scheme
is secure against chosen ciphertext and plaintext attacks if |δ0

F,D(n) − δ1
F,D(n)| is

negligible in n for all (probabilistic polynomial-time) adversary pairs (F, D).
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