
Reducing the Servers Computation in Private
Information Retrieval: PIR with Preprocessing

Amos Beimel1, Yuval Ishai2, and Tal Malkin3

1 Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
beimel@cs.bgu.ac.il

2 DIMACS and AT&T Labs – Research, USA. yuval@dimacs.rutgers.edu
3 AT&T Labs – Research, 180 Park Ave., Florham Park, NJ 07932, USA.

tal@research.att.com.

Abstract. Private information retrieval (PIR) enables a user to retrieve
a specific data item from a database, replicated among one or more
servers, while hiding from each server the identity of the retrieved item.
This problem was suggested by Chor et al. [11], and since then efficient
protocols with sub-linear communication were suggested. However, in
all these protocols the servers’ computation for each retrieval is at least
linear in the size of entire database, even if the user requires just one
bit.
In this paper, we study the computational complexity of PIR. We show
that in the standard PIR model, where the servers hold only the database,
linear computation cannot be avoided. To overcome this problem we pro-
pose the model of PIR with preprocessing: Before the execution of the
protocol each server may compute and store polynomially-many informa-
tion bits regarding the database; later on, this information should enable
the servers to answer each query of the user with more efficient computa-
tion. We demonstrate that preprocessing can save work. In particular, we
construct, for any constant k ≥ 2, a k-server protocol with O(n1/(2k−1))
communication and O(n/ log2k−2 n) work, and for any constants k ≥ 2
and ε > 0 a k-server protocol with O(n1/k+ε) communication and work.
We also prove some lower bounds on the work of the servers when they
are only allowed to store a small number of extra bits. Finally, we present
some alternative approaches to saving computation, by batching queries
or by moving most of the computation to an off-line stage.

1 Introduction

In this era of the Internet and www.bigbrother.com, it is essential to protect the
privacy of the small user. An important aspect of this problem is hiding the in-
formation the user is interested in. For example, an investor might want to know
the value of a certain stock in the stock-market without revealing the identity
of this stock. Towards this end, Chor, Goldreich, Kushilevitz, and Sudan [11]
introduced the problem of Private Information Retrieval (PIR). A PIR protocol
allows a user to access a database such that the server storing the database does
not gain any information on the records the user read. To make the problem

M. Bellare (Ed.): CRYPTO 2000, LNCS 1880, pp. 55–73, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



56 Amos Beimel, Yuval Ishai, and Tal Malkin

more concrete, the database is modeled as an n bit string x, and the user has
some index i and is interested in privately retrieving the value of xi.

Since its introduction, PIR has been an area of active research, and various
settings and extensions have been considered (e.g., [2,25,10,20,18,17,14,9,8,19,15],
[21,1]). Most of the initial work on PIR has focused on the goal of minimizing
the communication, which was considered the most expensive resource. However,
despite considerable success in realizing this goal, the real-life applicability of the
proposed solutions remains questionable. One of the most important practical
restrictions is the computation required by the servers in the existing protocols;
in all protocols described in previous papers, the (expected) work of the server(s)
involved is at least n, the size of the entire database, for a single query of the
user. This computation overhead may be prohibitive, since the typical scenario
for using PIR protocols is when the database is big.

In this paper, we initiate the study of using preprocessing to reduce server
computation.1 We demonstrate that, while without any preprocessing linear
computation is unavoidable, with preprocessing and some extra storage, com-
putation can be reduced. Such a tradeoff between storage and computation is
especially motivated today; as storage becomes very cheap, the computation time
emerges as the more important resource. We also provide some lower bounds on
this tradeoff, relating the amount of additional storage and the computation re-
quired. Finally, we present some alternative approaches to saving computation.
While this paper is still within the theoretical realm, we hope that the approach
introduced here will lead to PIR protocols which are implemented in practice.

Previous Work. Before proceeding, we give a brief overview of some known re-
sults on PIR. The simplest solution to the PIR problem is that of communicating
the entire database to the user. This solution is impractical when the database
is large. However, if the server is not allowed to gain any information about
the retrieved bit, then the linear communication complexity of this solution is
optimal [11]. To overcome this problem, Chor et al. [11] suggested that the user
accesses replicated copies of the database kept on different servers, requiring that
each server gets absolutely no information on the bit the user reads (thus, these
protocols are called information-theoretic PIR protocols). The best information-
theoretic PIR protocols known to date are summarized below: (1) a 2-server
protocol with communication complexity of O

(
n1/3

)
bits [11], (2) a k-server

protocol, for a constant k, with communication complexity of O
(
n1/(2k−1)

)
bits

[2] (improving on [11], see also [19]), and (3) a protocol with O (log n) servers
and communication complexity of O

(
log2 n log log n

)
bits [5,6,11]. In all these

protocols it is assumed that the servers do not communicate with each other.2

A different approach for reducing the communication is to limit the power
of the servers; i.e., to relax the perfect privacy requirement into computational
indistinguishability against computationally bounded servers (thus, these pro-
tocols are called computational PIR protocols). Following a 2-server construc-
1 [17] have used preprocessing in a different model, allowing to move most computation

to special purpose servers (though not reducing the total work). See more below.
2 Extensions to t-private PIR protocols, in which the user is protected against collu-

sions of up to t servers, have been considered in [11,19,7].



Reducing the Servers Computation in PIR 57

tion of Chor and Gilboa [10], Kushilevitz and Ostrovsky [20] proved that in
this setting one server suffices; under a standard number theoretic assumption
they construct, for every constant ε > 0, a single server protocol with com-
munication complexity of O (nε) bits. Cachin, Micali, and Stadler [9] present a
single server protocol with polylogarithmic communication complexity, based on
a new number theoretic intractability assumption. Other works in this setting
are [25,24,27,8,15,21,1].

The only previous work that has addressed the servers’ computation is that
of Gertner, Goldwasser, and Malkin [17] (see also [23]), who present a model for
PIR utilizing special-purpose privacy servers, achieving stronger privacy guaran-
tees and small computation for the original server holding the database. While
their protocols save computation for the original server, the computation of the
special-purpose servers (who do not hold the database) is still linear for every
query. In contrast, our goal is to reduce the total computation by all servers.
Di-Crescenzo, Ishai, and Ostrovsky [14] present another model for PIR using
special-purpose servers. By extending their technique, it is possible to shift most
of the servers’ work to an off-line stage, at the expense of requiring additional
off-line work for each future query. This application is discussed in Section 5.

Our Results. As a starting point for this work, we prove that in any k-server
protocol the total expected work of the servers is at least n (or negligibly smaller
than n in the computational setting). Consequently, we suggest the model of
PIR with preprocessing: Before the first execution of the protocol each server
computes and stores some information regarding the database. These bits of
information are called the extra bits (in contrast to the original data bits). Later
on, this information should enable the servers to perform less computation for
each of the (possibly many) queries of the users.3 The number of extra bits each
server is allowed to store in the preprocessing stage is polynomial in n.

We demonstrate that preprocessing can save computation. There are three
important performance measurements that we would like to minimize: commu-
nication, servers’ work (i.e., computation), and storage. We describe a few pro-
tocols with different trade-offs between these parameters. We first construct, for
any ε > 0 and constant k ≥ 2, a k-server protocol with O(n1/(2k−1)) communica-
tion, O

(
n/(ε log n)2k−2

)
work, and O(n1+ε) extra bits (where n is the size of the

database). The importance of this protocol is that it saves work without increas-
ing the communication compared to the best known information-theoretic PIR
protocols. We define a combinatorial problem for which a better solution will
further reduce the work in this protocol. Our second construction moderately
increases the communication; however the servers’ work is much smaller. For
any constants k ≥ 2 and ε > 0, we construct a k-server protocol with polyno-
mially many extra bits and O(n1/k+ε) communication and work. All the above
protocols maintain information-theoretic user privacy.

We prove, on the negative side, that if the servers are only allowed to store
a bounded number of bits in the preprocessing stage, then their computation
in response to each query is big. In particular, we prove that if the servers are

3 This problem can be rephrased in terms of Yao’s cell-probe model [28]; in the full
version of the paper we elaborate on the connection with this model.



58 Amos Beimel, Yuval Ishai, and Tal Malkin

allowed to store only e extra bits (e ≥ 1) in the preprocessing stage, then the
expected work of the servers is Ω(n/e).

Finally, we suggest two alternative approaches for saving work. First, we
suggest batching multiple queries to reduce the amortized work per query, and
show how to achieve sub-linear work while maintaining the same communication.
Second, we show how to shift most of the work to an off-line stage, applying a
separate preprocessing procedure for each future query. While generally more
restrictive than our default model, both of these alternative approaches may be
applied in the single-server case as well.
Organization. In Section 2 we provide the necessary definitions, in Section 3
we construct PIR protocols with reduced work, and in Section 4 we prove our
lower bounds. In Section 5 we present the alternative approaches of batching
and off-line communication, and in Section 6 we mention some open problems.

2 Definitions

We first define one-round4 information-theoretic PIR protocols. A k-server PIR
protocol involves k servers S1, . . . ,Sk, each holding the same n-bit string x (the
database), and a user who wants to retrieve a bit xi of the database.

Definition 1 (PIR). A k-server PIR protocol P = (Q1, . . . ,Qk,A1, . . . ,Ak, C)
consists of three types of algorithms: query algorithms Qj(·, ·), answering algo-
rithms Aj(·, ·), and a reconstruction algorithm C(·, ·, . . . , ·) (C has k + 2 argu-
ments). At the beginning of the protocol, the user picks a random string r and,
for j = 1, . . . , k, computes a query qj = Qj(i, r) and sends it to server Sj.
Each server responds with an answer aj = Aj(qj , x) (the answer is a function
of the query and the database; without loss of generality, the servers are deter-
ministic). Finally, the user computes the bit xi by applying the reconstruction
algorithm C(i, r, a1, . . . , ak). A PIR protocol is secure if:
Correctness. The user always computes the correct value of xi. Formally,
C(i, r,A1(Q1(i, r), x), . . . ,Ak(Qk(i, r), x)) = xi for every i ∈ {1, ..., n}, every
random string r, and every database x ∈ {0, 1}n.
Privacy. Each server has no information about the bit that the user tries to
retrieve: For every two indices i1 and i2, where 1 ≤ i1, i2 ≤ n, and for every j,
where 1 ≤ j ≤ k, the distributions Qj(i1, ·) and Qj(i2, ·) are identical.

We next define the model proposed in this paper, PIR with preprocessing.
Adding the preprocessing algorithm E will become meaningful when we define
the work in PIR protocols.

Definition 2 (PIR with Preprocessing). A PIR protocol with e extra bits
P = (E ,Q1, . . . ,Qk,A1, . . . ,Ak, C) consists of 4 types of algorithms: preprocess-
ing algorithm E which computes a mapping from {0, 1}n to {0, 1}e, query and
4 All the protocols constructed in this paper, as well as most previous PIR protocols,

are one-round. This definition may be extended to multi-round PIR in the natural
way. All our results (specifically, our lower bounds) hold for the multi-round case.



Reducing the Servers Computation in PIR 59

reconstruction algorithms Qj and C which are the same as in regular PIR pro-
tocols, and the answer algorithms Aj(·, ·, ·), which, in addition to the query qj

and the database x, have an extra parameter – the extra bits E(x). The privacy
is as above and the correctness includes E:
Correctness with Extra Bits. The user always computes the correct value
of xi. Formally, C(i, r,A1(Q1(i, r), x, E(x)), . . . ,Ak(Qk(i, r), x, E(x))) = xi for
every i ∈ {1, ..., n}, every random string r, and every database x ∈ {0, 1}n.

Next we define the work in a PIR protocol. We measure the work in a sim-
plistic way, only counting the number of bits that the servers read (both from
the database itself and from the extra bits). This is reasonable when dealing with
lower bounds (and might even be too conservative as the work might be higher).
In general this definition is not suitable for proving upper bounds. However, in
all our protocols the servers’ total work is linear in the number of bits they read.

Definition 3 (Work in PIR). Fix a PIR protocol P. For a query q and
database x ∈ {0, 1}n we denote the the number of bits that Sj reads from x
and E(x) in response to q by BITSj(x, q).5 For a random string r of the user,
an index i ∈ {1, . . . , n}, and a database x, the work of the servers is defined
as the sum of the number of bits each server reads. Formally, WORK(i, x, r) def=∑k

j=1 BITSj(x,Qj(i, r)). Finally, the work of the servers for an i ∈ {1, . . . , n},
and a database x is the expected value, over r, of WORK(i, x, r). That is,
WORK(i, x) def= Er [WORK(i, x, r)].

Notation. We let [m] denote the set {1, . . . ,m}. For a set A and an element
i, define A ⊕ i as A ∪ {i} if i �∈ A and as A \ {i} if i ∈ A. For a finite set A,
define i∈U A as assigning a value to i which is chosen randomly with uniform
distribution from A independently of any other event. We let GF(2) denote the
finite field of two elements. All logarithms are taken to the base 2. By H we
denote the binary entropy function; that is, H(p) = −p log p− (1− p) log(1− p).

3 Upper Bounds
We show that preprocessing can reduce the work. We start with a simple pro-
tocol which demonstrates ideas of the protocols in the rest of the section, in
Section 3.1 we present a 2-server protocol with O(n/ log2 n) work, and in Sec-
tion 3.2 we construct a k-server protocol, for a constant k, with O(n/ log2k−2 n)
work. In these protocols the communication is O(n1/(2k−1)) for k servers. In
Section 3.3 we describe a combinatorial problem concerning spanning of cubes;
a good construction for this problem will reduce the work in the previous proto-
cols. Finally, in Section 3.4 we utilize PIR protocols with short query complexity
to obtain k-server protocols with O

(
n1/k+ε

)
work and communication.

A Warm-Up. We show that using n2/ log n extra bits we can reduce the work
to n/ log n. This is only a warm-up as the communication in this protocol is
O(n). We save work in a simple 2-server protocol of Chor et al. [11].
5 Technically speaking, also E(x) should have been a parameter of BITS. However,

since E is a function of x we can omit it.



60 Amos Beimel, Yuval Ishai, and Tal Malkin

Original Protocol [11]. The user selects a random set A1 ⊆ [n], and com-
putes A2 = A1 ⊕ i. The user sends Aj to Sj for j = 1, 2. Server Sj an-
swers with aj =

⊕

∈Aj x
. The user then computes a1 ⊕ a2 which equals⊕


∈A1 x
 ⊕⊕
∈A1⊕i x
 = xi. Thus, the user outputs the correct value. The
communication in this protocol is 2(n+ 1) = O(n), since the user needs to send
n bits to specify a random subset Aj to Sj , and Sj replies with a single bit.
Our Construction. We use the same queries and answers as in the above
protocol, but use preprocessing to reduce the servers’ work while computing
their answers. Notice that in the above protocol each server only computes
the exclusive-or of a subset of bits. To save on-line work, the servers can pre-
compute the exclusive-or of some subsets of bits. More precisely, the set [n] is
partitioned to n/ log n disjoint sets D1, . . . , Dn/ log n of size log n (e.g., Dt =
{(t− 1) log n+ 1, . . . , t log n} for t = 1, . . . , n/ log n). Each server computes the
exclusive-or for every subset of these sets. That is, for every t, where 1 ≤ t ≤
n/ log n, and every G ⊆ Dt, each server computes and stores ⊕
∈Gx
. This re-
quires (n/ log n) ·2log n = n2/ log n extra bits. Once a server has these extra bits,
it can compute its answer as an exclusive-or of n/ log n bits; that is, Sj computes
the exclusive-or of the pre-computed bits

⊕

∈Aj∩D1

x
, . . . ,
⊕


∈Aj∩Dn/ log n
x
.

3.1 A 2-Server Protocol with Improved Work

We describe, for every constant ε, a 2-server protocol with O(n1+ε) extra bits,
O
(
n1/3

)
communication, and O(n/(ε2 log2 n)) work. Thus, our protocol exhibits

tradeoff between the number of extra bits and the work. As the best known
information-theoretic 2-server protocol without extra bits requires O

(
n1/3

)
com-

munication, our protocol saves work without paying in the communication.

Theorem 1. For every ε, where ε > 4/ log n, there exists a 2-server PIR proto-
col with n1+ε extra bits in which the work of the servers is O

(
n/(ε2 log2 n)

)
and

the communication is O(n1/3).

Proof. We describe a simpler (and slightly improved) variant of a 2-server pro-
tocol of [11], and then show how preprocessing can save work for the servers.
Original Protocol (variant of [11]). Let n = m3 for some m, and con-
sider the database as a 3-dimensional cube, i.e., every i ∈ [n] is represented
as 〈i1, i2, i3〉 where ir ∈ [m] for r = 1, 2, 3. This is done using the natural
mapping from {0, 1}m3

to ({0, 1}m)3. In Fig. 1 we describe the protocol. It
can be checked that each bit, except for xi1,i2,i3 , appears an even number of
times in the exclusive-or the user computes in Step 3, thus cancels itself. There-
fore, the user outputs xi1,i2,i3 as required. Furthermore, the communication is
O(m) = O(n1/3).
Our Construction. To save on-line work the servers pre-compute the exclusi-
ve-or of some sub-cubes of bits. Let α = 0.5ε log n. The set [m] is partitioned to
m/α disjoint sets D1, . . . , Dm/α of size α (e.g., Dt = {(t− 1)α+ 1, . . . , tα} for
t = 1, . . . ,m/α). For every � ∈ [m], every t1, t2, where 1 ≤ t1, t2 ≤ m/α, every
G1 ⊆ Dt1 , and every G2 ⊆ Dt2 , each server computes and stores the three bits



Reducing the Servers Computation in PIR 61

A Two Server Protocol with Low Communication

1. The user selects three random sets A1
1, A

1
2, A

1
3 ⊆ [m], and computes

A2
r = A1

r ⊕ ir for r = 1, 2, 3. The user sends Aj
1, A

j
2, A

j
3 to Sj for

j = 1, 2.
2. Server Sj computes for every � ∈ [m]

aj
1,�

def=
⊕

�1∈A
j
2,�2∈A

j
3
x�,�1,�2 , aj

2,�

def=
⊕

�1∈A
j
1,�2∈A

j
3
x�1,�,�2 , and

aj
3,�

def=
⊕

�1∈A
j
1,�2∈A

j
2
x�1,�2,�,

and sends the 3m bits
{
aj

r,� : r ∈ {1, 2, 3} , � ∈ [m]
}

to the user.
3. The user outputs

⊕
r=1,2,3(a1

r,ir
⊕ a2

r,ir
).

Fig. 1. A two server protocol with communication O(n1/3).⊕

1∈G1,
2∈G2

x
,
1,
2 ,
⊕


1∈G1,
2∈G2
x
1,
,
2 , and

⊕

1∈G1,
2∈G2

x
1,
2,
. This re-
quires 3m · (m/α)2 · 22α ≤ m3 · 2ε log n = n1+ε extra bits. Once a server has these
extra bits, it can compute each bit of its answer as an exclusive-or of O(m2/α2)
pre-computed bits.
Analysis. The answer of each server contains O(m) bits, and each bit requires
reading O(m2/α2) bits. Thus, the number of bits that each server reads is
O(m3/α2) = O

(
n/(ε log n)2

)
. ��

3.2 A k-Server Protocol with Small Communication

We present a k-server protocol with O(n1+ε) extra bits, O
(
n1/(2k−1)

)
communi-

cation, and O
(
n/(ε log n)2k−2

)
work for constant k. (The best known informat-

ion-theoretic k-server protocol without extra bits requires the same communica-
tion and O(n) work).

Theorem 2. For every k and ε > 4k/ log n, there is a k-server PIR protocol
with n1+ε extra bits in which the work is O

(
(2k)4kn/(ε log n)2k−2

)
and the com-

munication is O(n1/(2k−1)). If k is constant, the work is O
(
n/(ε log n)2k−2

)
, and

if k ≤ 0.5(log n)1/4 and ε ≥ 1 then the work is O
(
n/(ε log n)k−2

)
.

Proof. We save work in a k-server protocol of Ishai and Kushilevitz [19].
Original Protocol [19]. As the protocol of [19] involves some notation, we
only describe its relevant properties. Let n = md for some m and for d = 2k− 1.
The database is considered as a d-dimensional cube. That is, every index i ∈ [n]
is represented as 〈i1, i2, . . . , id〉 where ir ∈ [m] for r = 1, 2, . . . , d. A sub-cube of
the d-dimensional cube is defined by d sets A1, . . . , Ad and contains all indices
〈i1, i2, . . . , id〉 such that ir ∈ Ar for every r. A sub-cube is a (d− 1)-dimensional
sub-cube if there exists some r such that |Ar| = 1. In the protocol from [19] each
server has to compute, for kdm sub-cubes of dimension (d− 1), the exclusive-or
of bits of the sub-cube. The communication in the protocol is O

(
k3n1/(2k−1)

)
.

Our Construction. To save on-line work the servers compute in advance the
exclusive-or of bits for some (d− 1)-dimensional sub-cubes. Let α = ε log n

d−1 . The



62 Amos Beimel, Yuval Ishai, and Tal Malkin

set [m] is partitioned to m/α disjoint sets D1, . . . , Dm/α of size α. For every
r ∈ {1, . . . , d}, every � ∈ [m], every t1, t2, . . . , td−1, where 1 ≤ t1, t2, . . . , td−1 ≤
m/α, every G1 ⊆ Dt1 , every G2 ⊆ Dt2 , . . ., and every Gd−1 ⊆ Dtd−1 , each
server computes and stores the bit

⊕

1∈G1,...,
d−1∈Gd−1

x
1,...,
r−1,
,
r,...,
d−1 . This

requires dm · (m/α)d−1 · 2(d−1)α < md · 2(d−1)α = n · 2(d−1) ε log n
d−1 = n1+ε extra

bits (the inequality holds since dd−1 < 2 and since ε > 4k/ log n). Once a server
has these extra bits, it can compute each exclusive-or of the bits of any (d− 1)-
dimensional sub-cube as an exclusive-or of O(md−1/αd−1) pre-computed bits.
Analysis. The answer of each server requires computing the exclusive-or of the
bits of a (d − 1)-dimensional sub-cube for O(kdm) sub-cubes, and each sub-
cube requires reading O((m/α)d−1) bits. Thus, the number of bits that each
server reads is O(kdmd/αd−1). Recall that d = 2k− 1, thus the work reduces to
O
(
(2k)4kn/(ε log n)2k−2

)
. ��

3.3 Can the Protocols Be Improved?

We now describe a combinatorial problem concerning spanning of cubes. This
problem is a special case of a more general problem posed by Dodis [16]. Our
protocols in Section 3.1 and Section 3.2 are based on constructions for this
problem; better constructions will enable to further reduce the work in these
protocols.

We start with some notation. Consider the collection of all d-dimensional sub-
cubes Fd

def= {G1 × . . .×Gd : G1, . . . , Gd ⊆ [m]} . The exclusive-or of subsets of
[m]d is defined in the natural way: For sets S1, . . . , St ⊆ [m]d, the point � ∈ [m]d

is in
⊕t

j=1 Sj if and only if � is in an odd number of sets Sj .

Definition 4 (q-xor basis). X ⊆ 2[m]d is a q-xor basis of Fd if every sub-cube
in Fd can be expressed as the exclusive-or of at most q sets from X .

For example, for D1, . . . , Dm/ log m the partition of [m], defined in Section 3.1,
the collection X0

def= {G1 ×G2 : ∃i, j G1 ⊆ Di, G2 ⊆ Dj} is a m2/ log2m-xor
basis of F2. We next show how to use a q-xor basis of F2 for 2-server PIR pro-
tocols. A similar claim holds for q-xor basis of F2k−2 for k-server PIR protocols.

Lemma 1. If X is a q-xor basis of F2 then there exists a 2-server PIR protocol
in which the communication is O(n1/3), the work is O(n1/3q), and the number
of extra bits is O(n1/3|X |).
Proof. We start with the protocol of [11], described in Fig. 1, in which n = m3.
For each set S ∈ X , each server computes and stores 3m|X | bits: for every � ∈ [m]
it stores the bits

⊕
(
1,
2)∈S x
,
1,
2 ,

⊕
(
1,
2)∈S x
1,
,
2 , and

⊕
(
1,
2)∈S x
1,
2,
. In

the protocol of [11] each server has to compute the exclusive-or of the bits of a
2-dimensional sub-cube for O(m) sub-cubes. Each exclusive-or requires reading
at most q stored bits, hence the total work per server is O(mq) = O(n1/3q).6 ��
6 Each server should be able to efficiently decide which q bits it needs for computing

each answer bit; otherwise our measurement of work may be inappropriate.



Reducing the Servers Computation in PIR 63

Lemma 1 suggests the following problem:
The combinatorial Problem. Construct a q-xor basis of Fd of size poly(md)
such that q is as small as possible.

It can be shown that the smallest q for which there is a q-xor basis of Fd

whose size is poly(md) satisfies Ω(m/ logm) ≤ q ≤ O(md/ logd m). We do not
know where in this range the minimum q lies. A construction with a smaller q
than the current upper bound will further reduce the work in PIR protocols.

3.4 Utilizing PIR Protocols with Logarithmic Query Length

If we have a PIR protocol with logarithmic query length and sub-linear answer
length, then it is feasible for the servers to compute and store in advance the an-
swers to all of the (polynomially many) possible queries. When a server receives
a query it only needs to read the prepared answer bits. In general,

Lemma 2. If there is a k-server PIR protocol in which the length of the query
sent to each server is α and the length of answer of each server is β, then there
is a k-server PIR protocol with β work per server, α + β communication, and
2α · β extra-bits.

A 2-server PIR protocol with α = log n and sub-linear β is implied by com-
munication complexity results of [26,4,3]. The most recent of those, due to Am-
bainis and Lokam [3], implies an upper bound of β = n0.728...+o(1).7 We use sim-
ilar techniques to construct a family of PIR protocols which provides a general
tradeoff between α and β. In particular, our construction allows the exponent
in the polynomial bounding the answer length to get arbitrarily close to 1/2
while maintaining O(log n) query length. At the heart of the construction is the
following lemma of Babai, Kimmel, and Lokam [4]. Let Λ(m,w) =

∑w
h=0

(
m
h

)
.

Lemma 3 ([4]). Let p(Y1, Y2, . . . , Ym) be a degree-d m-variate polynomial8 over
GF(2). Let yh


 , where 1 ≤ h ≤ k and 1 ≤ � ≤ m, be arbitrary km elements of
GF(2), and y
 =

∑k
h=1 y

h

 for � = 1, . . . ,m. Suppose that each Sj knows all

(k − 1)m bits yh

 with h �= j and the polynomial p, and that the user knows all

km values yh

 but does not know p. Then, there exists a communication protocol

in which each Sj simultaneously sends to the user a single message of length
Λ(m, �d/k�), and the user always outputs the correct bit value of p(y1, . . . , ym).

The key idea in our construction is to apply Lemma 3 where (y1, y2, . . . , ym)
is a “convenient” encoding of the retrieval index i. Specifically, by using a low-
weight encoding of i, the data bit xi can be expressed as a low-degree polynomial
(depending on x) in the bits of the encoding. By letting the user secret-share the
encoding of i among the servers in an appropriate manner, Lemma 3 will allow
the servers to communicate xi to the user efficiently. Low-weight encodings (over
larger fields) have been previously used in PIR-related works [6,11,14]. However,
it is the combination of this encoding with Lemma 3 which gives us the extra
power.
7 This immediately implies a protocol with n0.728...+o(1) communication and work

and n1.728...+o(1) extra-bits.
8 A degree-d polynomial is a multi-linear polynomial of (total) degree at most d.



64 Amos Beimel, Yuval Ishai, and Tal Malkin

Theorem 3. Let m and d be positive integers such that Λ(m, d) ≥ n. Then, for
any k ≥ 2, there exists a k-server PIR protocol with α = (k − 1)m query bits
and β = Λ(m, �d/k�) answer bits per server.

Proof. Assign a distinct length-m binary encoding E(i) to each index i ∈ [n],
such that E(i) contains at most d ones. (Such an encoding exists since Λ(m, d) ≥
n.) For each x ∈ {0, 1}n, define a degree-d m-variate polynomial px over GF(2)
such that px(E(i)) = xi for every i ∈ [n].9 Specifically, let px(Y1, . . . , Ym) =∑n

i=1 xi · p(i)(Y1, . . . , Ym), where each p(i) is a fixed degree-d polynomial such
that p(i)(E(i′)) equals 1 if i = i′ and equals 0 if i �= i′. (The polynomials p(i) can
be constructed in a straightforward way; details are omitted from this version.)
The protocol with the specified complexity is described below. The user encodes
i as the m-bit string y = E(i), and breaks each bit y
, where 1 ≤ � ≤ m, into k
additive shares y1
 , . . . , y

k

 ; that is, y

1

 , . . . , y

k−1

 are chosen uniformly at random

from GF(2), and yk

 is set so that the sum (i.e., exclusive-or) of the k shares is

equal to y
. The user sends to each Sj the (k − 1)m shares yh

 with h �= j. The

query sent to each Sj consists of (k − 1)m uniformly random bits, guaranteeing
the privacy of the protocol. By Lemma 3, each server can send Λ(m, �d/k�) bits
to the user such that the user can reconstruct px(y1, . . . , ym) = xi. ��

We note that, by using constant-weight encodings, Theorem 3 can be used
to improve the communication complexity of the 2-server protocol from [11]
and its k-server generalizations from [2,19] by constant factors. This and further
applications of the technique are studied in [7]. For the current application,
however, we will be most interested in denser encodings, in which the relative
weight d/m is fixed as some constant θ, where 0 < θ ≤ 1/2. In the following
we rely on the approximation 2(H(θ)−o(1))m ≤ Λ(m, �θm�) ≤ 2H(θ)m (cf. [22,
Theorem 1.4.5]). For Λ(m, �θm�) ≥ n to hold, it is sufficient to letm = (1/H(θ)+
o(1)) logn. Substituting the above m and d = �θm� in Theorem 3, and applying
the transformation to PIR with preprocessing described in Lemma 2, we obtain:

Theorem 4. For any integer k ≥ 2 and constant 0 < θ ≤ 1/2, there ex-
ists a k-server protocol with nH(θ/k)/H(θ)+o(1) communication and work, and
n(k−1+H(θ/k))/H(θ)+o(1) extra bits.

In particular, since H(θ/k)/H(θ) tends to 1/k as θ tends to 0, we have:

Theorem 5. For any constants k ≥ 2 and ε > 0 there exists a k-server protocol
with polynomially many extra bits and O

(
n1/k+ε

)
communication and work.

The number of extra bits in the protocols of Theorem 4 may be quite
large. By partitioning the database into small blocks, as in [11], it is possi-
ble to obtain a more general tradeoff between the storage and the communica-
tion and work. Specifically, by using blocks of size nµ, where 0 < µ ≤ 1, we
9 The existence of an encoding E : [n] → GF(2)m such that xi can be expressed

as a degree-d polynomial in the encoding of i easily follows from the fact that the
space of degree-d m-variate polynomials has dimension Λ(m, d). We use the specific
low-weight encoding for concreteness. Furthermore, the condition Λ(m, d) ≥ n is
essential for the existence of such encoding.



Reducing the Servers Computation in PIR 65

obtain a protocol with nµH(θ/k)/H(θ)+(1−µ)+o(1) communication and work and
nµ(k−1+H(θ/k))/H(θ)+(1−µ)+o(1) extra bits.10 It follows that for any constant ε > 0
there exists a constant ε′ > 0 such that there is a 2-server protocol with O(n1+ε)
extra bits and O(n1−ε′

) communication and work.

Remark 1. There is a k-server PIR protocol with one extra bit (which is the
exlusive-or of all bits in the database), k

2k−1 ·n work, and O(n) communication.
Thus, with 1 extra-bit we can save a constant fraction of the work. In Section 4
we show that with a constant number of bits at most a constant fraction of the
computation can be saved, and if the bit is an exclusive-or of a subset of the
data bits then the computation is at least n/2. Thus, this protocol illustrates
that our lower bounds are essentially tight. The protocol will be described in the
full version of this paper.

4 Lower Bounds

We prove that without preprocessing (namely without extra bits), the expected
number of bits all servers must read is at least n, the size of the database. We
then prove that if there are e extra bits (e ≥ 1) then the expected number of
bits all servers must read is Ω(n/e). These lower bounds hold for any number of
servers k, and regardless of the communication complexity of the protocol.

Note that we only prove that the expectation is big, since there could be
specific executions where the servers read together less bits.11 The fact that
there are executions with small work should be contrasted with single-server
(computational) PIR protocols without preprocessing, where the server has to
read the entire database for each query, except with negligible probability: if the
server does not read x
 in response to some query, it knows that the user is not
interested in x
, violating the user’s privacy.

We start with some notation crucial for the lower bound. Fix a PIR protocol,
and denote the user’s random input by r. Let C ⊆ {0, 1}n be a set of strings
(databases) to be fixed later. Define Bj(i) as the set of all indices that server Sj

reads in order to answer the user’s query when the database is chosen uniformly
from C. Note that the set of bits Bj(i) that Sj reads is a function of the query
and the values of the bits that the server has already read. Since the query is
a function of the index and the user’s random input, the set Bj(i) is a random
variable of the user’s random input r and the database c∈U C. Next define

P(�) def= max
1≤i≤n


Prr,c


� ∈

k⋃
j=1

Bj(i)




 . (1)

10 In particular, the protocol obtained by letting k = 2, θ = 1 − 1/
√

2, and µ = H(θ)
is very similar (and is slightly superior) to the protocol implied by [3].

11 For example, consider the following 2-server protocol (without any extra bits). The
user with probability 1

n
sends i to server S1, and nothing to server S2, and with

probability (1− 1
n

) sends a random j �= i to S1, and sends [n] to S2. Server Sj , upon
reception of a set Bj , replies with the bits {x� : � ∈ Bj} to the user.



66 Amos Beimel, Yuval Ishai, and Tal Malkin

That is, for every index i we consider the probability that at least one server
reads x
 on a query generated for index i, and P(�) is the maximum of these
probabilities. Furthermore, define the random variable Bj

def= Bj(1) (by Lemma 4
below, the random variable Bj would not change if we choose another index
instead of 1). Finally, for every � define Pj(�)

def= Prr,c[� ∈ Bj ], that is, the
probability that x
 is read by Sj (again, by Lemma 4 below, this probability is
the same no matter which index i was used to generate the query).

4.1 Technical Lemmas

We start with three lemmas that will be used to establish our lower bounds.
First note that, by the user’s privacy, the view of Sj , and in particular Bj(i), is
identically distributed for 1 and for any i. Thus,

Lemma 4. For every j ∈ {1, . . . , k}, every index i ∈ [n], and every set B ⊆ [n],
Prr,c[Bj(i) = B] = Prr,c[Bj = B].

Lemma 5. For every j ∈ {1, . . . , k} it hold that Er,c [|Bj |] =
∑n


=1 Pj(�).

Proof. Define the random variables Y1, . . . , Yn where Y
 = 1 if � ∈ Bj and Y
 = 0
otherwise. Clearly, Er,c [Y
] = Pr[Y
 = 1] = Pj(�). Furthermore, |Bj | =

∑n

=1 Y
.

Thus, Er,c [|Bj |] = Er,c [
∑n


=1 Y
] =
∑n


=1 Er,c [Y
] =
∑n


=1 Pj(�). ��
Next we prove that

∑n

=1 P(�) is a lower bound on the expected number of

bits the servers read, namely on the expected work for a random database in C.
Lemma 6. For every i ∈ [n], Er,c

[∑k
j=1 |Bj(i)|

]
≥∑n


=1 P(�).

Proof. First, for an index � ∈ [n] let i
 be an index that maximizes the probability
in the r.h.s. of (1), that is, P(�) = Prr,c

[
� ∈ ⋃n

j=1Bj(i
)
]
. Second, by Lemma 4,

Pj(�) = Pr
r,c
[� ∈ Bj(i
)] . (2)

Therefore, using the union bound,

P(�) = Pr
r,c


� ∈

n⋃
j=1

Bj(i
)


 ≤

k∑
j=1

Pr
r,c
[� ∈ Bj(i
)] =

k∑
j=1

Pj(�). (3)

Third, by Lemma 4,
Er,c [|Bj(i)|] = Er,c [|Bj |] . (4)

Thus, by linearity of the expectation, Equation (4), Lemma 5, and Inequality (3)

Er,c


 k∑

j=1

|Bj(i)|

 = k∑

j=1

Er,c [|Bj(i)|] =
k∑

j=1

Er,c [|Bj |]

=
k∑

j=1

(
n∑


=1

Pj(�)

)
=

n∑

=1


 k∑

j=1

Pj(�)


 ≥

n∑

=1

P(�). ��



Reducing the Servers Computation in PIR 67

We express Lemma 6 as a lower bound on the work for a specific database.

Corollary 1. For every PIR protocol there exists a database c ∈ {0, 1}n such
that for every i ∈ [n], WORK(i, c) ≥∑n


=1 P(�).

Proof. By our definitions Er,c∈C
∑k

j=1 |Bj(i)|=Er,c∈C
∑k

j=1 BITSj(c,Qj(i, r))=
Ec∈CWORK(i, c). Thus, by Lemma 6, Ec∈CWORK(i, c) ≥∑n


=1 P(�). Therefore,
there must be some c ∈ C such that WORK(i, c) ≥∑n


=1 P(�). ��

Remark 2. In the full version of this paper we prove that the corollary holds
(up to a negligible difference) even if we replace the perfect privacy of the k-
server PIR protocol with computational privacy. Thus, all the lower bounds in
this section hold, up to a negligible difference, for k-server computational PIR
protocols as well.

4.2 Lower Bound without Extra Bits

We next prove that without extra bits the expected number of bits that the
servers read is at least n. This lower bound holds for every database. For sim-
plicity we prove this lower bound for the case that the database is 0n. The idea
behind the lower bound is that one cannot obtain the value of x
 without reading
x
, thus for every query the user generates with index � at least one server must
read x
. This implies that P(�) = 1 and the lower bound follows Corollary 1.

Theorem 6. For every PIR protocol without extra bits and for every i ∈ [n]
WORK(i, 0n) ≥ n.

Proof. By Corollary 1 it is enough to prove that P(�) ≥ 1 for every �. (Trivially,
P(�) ≤ 1). Define C = {0n}, i.e., the probabilities P(�) are defined when the
value of the database is 0n. However, without reading the value of a bit, the
servers do not know this value. If when the user queries about the �th bit no
server reads this bit, then the answers of all the servers are the same for the
databases 0n and 0
−110n−
, so with this query for one of these databases the
user errs with probability at least 1/2 in the reconstruction of x
. Thus, by the
correctness, for any possible query of the user generated with index �, at least
one of the servers must read x
. Thus, P(�) ≥ Prr

[
� ∈ ⋃k

j=1Bj(�)
]
= 1. ��

4.3 Lower Bound with Extra Bits

In this section we show that a small number of extra bits cannot reduce the
work too much. The proof uses information theory, and especially properties of
the entropy function H (see, e.g., [12]).

To describe the ideas of the proof of the lower bound we first consider a
special case where each of the e extra bits is an exclusive-or of a subset of the
bits of the database. That is, there is a system of e linear equations over GF(2)
that determines the values of the extra bits; the unknowns are the bits of the



68 Amos Beimel, Yuval Ishai, and Tal Malkin

database. This is the case in all our protocols. (Better lower bounds for this case
are presented in the end of this section.)

By Corollary 1 we need to prove that the probabilities P(�) are big. We fix
the database to be x = 0n, therefore the values of the extra bits are fixed to
0 as well. Assume towards a contradiction that P(�) < 1/(e + 1) for at least
e+1 indices, which, w.l.o.g., are 1, . . . , e+1. This implies that for every i, where
1 ≤ i ≤ e+ 1, when the user is retrieving the ith bit, the servers, with positive
probability, do not read any of the bits x1, . . . , xe+1.

Now let xe+2, . . . , xn and all the extra bits be zero. We have established that
in this case the servers with positive probability do not read the bits x1, . . . , xe+1,
and the user concludes that x1 = 0, . . . , xe+1 = 0 from the answers of the
servers. Hence, by the correctness, it must hold that x1 = 0, . . . , xe+1 = 0.
But in this case the linear system that determines the extra bits is reduced to
a system of e homogeneous linear equations over GF(2) where the unknowns
are the bits x1, . . . , xe+1. Any homogeneous system with e equations and e + 1
unknowns has a non-trivial solution. Therefore, there is a non-zero database in
which xe+2, . . . , xn and all the extra bits be zero, contradiction since at least one
bit xi among x1, . . . , xe+1 is not determined by xe+2, . . . , xn and the extra bits.

The above proof is only the rough idea of the proof of the general case. One
problem in the general case is that we cannot fix the value of the database, and
we need more sophisticated methods.

Theorem 7. For every PIR protocol with e extra bits, there is some database
c ∈ {0, 1}n such that for every i ∈ [n], WORK(i, c) ≥ n

4e − 1
2 .

Proof. Since there are e extra bits, there exits a value for these bits that is
computed for at least 2n−e databases. Fix such a value for the extra bits and let
C be the set of databases with this value for the extra bits. Thus, |C| ≥ 2n−e.
Let C be a random variable distributed uniformly over C, and Ci be the ith bit
of C. By definition,

H(C) = log |C| ≥ n− e. (5)

We will prove that for all indices, but at most 2e, it holds that P(�) ≥ 1/(4e).
Thus, the theorem follows from Corollary 1. Without loss of generality, assume
that P(1) ≤ P(2) ≤ . . . ≤ P(n). We start with a simple analysis of the entropies
of Ci. First, by properties of conditional entropy,

H(C) = H(C1 . . . Cn) ≤ H(C2e+1 . . . Cn) +
2e∑


=1

H(C
|C2e+1 . . . Cn). (6)

Second, since C2e+1C2e+2 . . . Cn obtains at most 2n−2e values,

H(C2e+1C2e+2 . . . Cn) ≤ n− 2e. (7)

Combining (5), (6), and (7),

2e∑

=1

H(C
|C2e+1C2e+2 . . . Cn) ≥ H(C1 . . . Cn)−H(C2e+1 . . . Cn) ≥ e. (8)

The next lemma, together with (8), shows that not too many P(�) are small.



Reducing the Servers Computation in PIR 69

Lemma 7. If P(�) < 1
4e for every � ∈ [2e], then H(C
|C2e+1 . . . Cn) < 0.5 for

every � ∈ [2e].

Proof. Fix � and consider an experiment where the database c is chosen uni-
formly from C and the PIR protocol is executed with the user generating a ran-
dom query for index �. With probability at least half, none of the bits x1, . . . , x2e

are read by any server in this execution (the probability is taken over the random
input of the user and over the uniform distribution of c ∈ C). Denote by C′ ⊆ C
the set of all strings in C for which there is a positive probability that none of
the bits x1, . . . , x2e is read by any server (this time the probability is taken only
over the random input of the user). Thus, |C′| ≥ 0.5|C|. Since the user always
reconstructs the correct value of the bit x
, then for every c′ ∈ C′ the values of
the bits c′2e, . . . , c

′
n determine the value of c

′

; that is, for every c ∈ C if cm = c′m

for every m ∈ {2e+ 1, . . . , n}, then c
 = c′
. Now, define a random variable Z
where Z = 1 if the values of the bits c2e, . . . , cn determine the value of c
 and
Z = 0 otherwise. In particular, Z must be 1 for any string in C′. Hence,

Pr
c
[Z = 1] ≥ 0.5. (9)

Furthermore,
H(C
|C2e+1 . . . CnZ = 1) = 0. (10)

On the other hand, since C
 obtains at most two values,

H(C
|C2e+1 . . . CnZ = 0) ≤ H(C
) ≤ 1. (11)

By definition of conditional entropy, (11), (10), and (9)

H(C
|C2e+1 . . . CnZ)
= Pr[Z = 0] ·H(C
|C2e+1 . . . CnZ = 0) + Pr[Z = 1] ·H(C
|C2e+1 . . . CnZ = 1)
≤ Pr[Z = 0] < 0.5. (12)

The values of C2e+1, . . . , Cn determine the value of Z, i.e., H(Z|C2e+1 . . . Cn) =
0. Thus, H(C
|C2e+1 . . . Cn) = H(C
|C2e+1 . . . CnZ) < 0.5. ��

Lemma 7 and (8) imply that P(�) ≥ 1/4e for at least one � ∈ {1, . . . , 2e}.
Since we assume, without loss of generality, that P(1) ≤ P(2) ≤ . . . ≤ P(n),
then

∑n

=1 P(�) ≥ ∑n


=2e+1 P(�) ≥ (n − 2e)/4e, and by Corollary 1 the work of
servers is as claimed in the theorem. ��
Better Lower Bounds for Exclusive-or Extra Bits. If each extra bit is
an exclusive-or of the bits of a subset of the database, then the lower bound
of Theorem 7 can be improved by a factor of logn, as stated in the following
theorem (whose proof is omitted).

Theorem 8. If e < log n, then in every k-server PIR protocol with e exclusive-
or extra bits the work of the servers is at least (n − 2e)/2. If log n ≤ e ≤ √

n,
then in every k-server PIR protocol with e exclusive-or extra bits the work is
Ω(n log n/e).

As explained in Remark 1, the lower bound for a constant number of extra bits is
essentially tight, as a matching upper bound protocol with one extra bit exists.



70 Amos Beimel, Yuval Ishai, and Tal Malkin

5 Alternative Approaches for Saving Work

The PIR with preprocessing model allows to reduce the on-line work in PIR
protocols. In this section we discuss two alternative approaches for achieving
the same goal. While both are in a sense more restrictive than our original
model, in some situations they may be preferred. For instance, they both allow
to substantially reduce the on-line work in single-server computational PIR,
which is an important advantage over the solutions of Section 3.

5.1 Batching Queries
In the first alternative setting, we allow servers to batch together several queries
before replying to all of them. By default, no preprocessing is allowed. The main
performance measures of PIR protocols in this setting are: (1) the amortized
communication complexity, defined as the average communication per query; (2)
the amortized work per query; (3) the batch size, i.e., the minimum number of
queries which should be processed together; and (4) the extra space required
for storing and manipulating the batched queries. Note that in the case of a
single user, the trivial PIR solution of communicating the entire database gives
an optimal tradeoff between the batch size and the amortized work, namely
their product is n.12 However, this solution provides a poor tradeoff between
the amortized communication and the batch size (their product is n). Moreover,
as in the remainder of this paper, we are primarily interested in the general
situation where different queries may originate from different users.13

Our main tool for decreasing the amortized work is a reduction to matrix
multiplication. The savings achieved by the state-of-the-art matrix multiplica-
tion algorithms can be translated into savings in the amortized work of the
PIR protocols. To illustrate the technique, consider the 2-server PIR protocol
described in Fig. 1. In a single invocation of this protocol, each server has to
compute the exclusive-or of O(n1/3) two-dimensional sub-cubes. Each such com-
putation can be expressed as evaluating a product (over GF(2)) of the form atXb,
where a and b are vectors in GF(2)n

1/3
determined by the user’s query, and X is

an n1/3 ×n1/3 matrix determined by the database x. It follows that the answers
to n1/3 queries can be computed by evaluating O(n1/3) matrix products of the
form A ·X ·B, where the j-th row of A and the j-th column of B are determined
by the j-th query. The communication complexity of the protocol is O(n1/3) per
query, and its space and time requirements depend on the matrix multiplication
algorithm being employed. Letting ω denote the exponent of matrix multipli-
cation (Coppersmith and Winograd [13] prove that ω < 2.376), the amortized
work can be as low as O(n1/3nω/3)/n1/3 = O(nω/3), with batch size n1/3.

Finally, we note that the same approach can also be employed towards re-
ducing the amortized work in computational single-server PIR protocols, when
batching queries of users who share the same key. In the protocols from [20,24,27],
which utilize homomorphic encryption, the server’s computation on multiple
12 This is optimal by the lower bound of Theorem 6.
13 In this setting, the amortized communication complexity cannot be smaller than

the communication complexity of a corresponding (single-query) PIR protocol.



Reducing the Servers Computation in PIR 71

queries can be reduced to evaluating several matrix products. In each product
one matrix depends on the queries and is given in an encrypted form (using a
key held by the user) and the other depends on the database and is given in a
plain form. Now, by the definition of homomorphic encryption, an encryption
of the sum of two encrypted values and an encryption of the product of an en-
crypted value with a non-encrypted value are both easy to compute. It turns out
that these two operations are sufficient for implementing a fast matrix multipli-
cation algorithm where one of the matrices is given in an encrypted form and
the output may be encrypted as well. It follows (e.g., by modifying the protocol
from [20]) that for any constant ε > 0 there is a constant ε′ > 0, such that there
exists a single-server PIR protocol with O(nε) batch size, O(nε) communication,
O(n1−ε′

) amortized work, and sub-linear extra space.

5.2 Off-Line Interaction

In the PIR with preprocessing model, a single off-line computational effort can
reduce the on-line work in each of an unlimited number of future queries. It is
natural to ask whether the on-line work can be further reduced if a separate off-
line procedure is applied for each query. More precisely, we allow the user and
the servers to engage in an off-line protocol, involving both communication and
computation, so as to minimize the total on-line work associated with answering
a single future query. (The off-line protocol may be repeated an arbitrary number
of times, allowing to efficiently process many on-line queries.) During the off-
line stage, the database x is known to the servers but the retrieval index i is
unknown to the user. The goal is to obtain protocols with a small on-line work
and “reasonable” off-line work.14

Towards achieving the above goal we extend an idea from [14]. Given any k-
server PIR protocol (k ≥ 1) in which the user sends α query bits to each server
and receives β bits in return, Di-Crescenzo et al. [14] show how to construct
another k-server protocol where: (1) in the off-line stage the user sends α bits
to each server and receives nothing in return; (2) in the on-line stage the user
sends log n bits to each server and receives β bits in return. Since there are only
n possible on-line queries made by the user, the servers can pre-compute the
answers to each of these queries. Thus, with βn storage, O(α) off-line communi-
cation and polynomial off-line computation, the on-line work is reduced to O(β).
Fortunately, most known PIR protocols admit variants in which the answer com-
plexity β is very small, as small as a single bit in the multi-server case, while α
is still sub-linear (see [14] for a detailed account). For instance, in the 2-server

computational PIR protocol of Chor and Gilboa [10], α = 2O
(√

log n
)
and β = 1.

Furthermore, by utilizing the structure of specific PIR protocols (including the
one from [10]), the off-line computation of each server may be reduced to mul-
tiplying a length-n data vector by an n × n Toeplitz matrix determined by the
user’s query. Thus, using the FFT algorithm, the total off-line computation can
be made very close to linear.
14 This may be compared to the approach of Gertner et al. [17], where instead of

shifting most computation to a “more reasonable place” (special purpose servers),
here we shift most computation to a “more reasonable time” (the off-line stage).



72 Amos Beimel, Yuval Ishai, and Tal Malkin

6 Open Problems

We have shown that using preprocessing in PIR protocols one can obtain poly-
nomial savings in the amount of computation without severely affecting the
communication complexity. However, this work only initiates the study on PIR
with preprocessing, and there are many open problems for further research. The
obvious open problem is if more substantial savings are possible:

How much can the work be reduced using polynomially many extra bits?
How much can be saved using linearly many extra bits?

All the solutions provided in this work (with the exception of Section 5) are
multi-server, information-theoretic PIR protocols. It is therefore natural to ask:

Can preprocessing substantially save work in single-server PIR protocols?

Acknowledgments. We thank Oded Goldreich for suggesting the question of
preprocessing in PIR protocols. Part of the work of Amos Beimel was done
while in Harvard University, supported by grants ONR-N00014-96-1-0550 and
ARO-DAAL03-92-G0115.

References

1. W. Aiello, S. Bhatt, R. Ostrovsky, and S. Rajagopalan. Fast Verification of Any
Remote Procedure Call: Short Witness-Indistinguishable One-Round Proofs for
NP. In ICALP 2000.

2. A. Ambainis. Upper bound on the communication complexity of private informa-
tion retrieval. In 24th ICALP, volume 1256 of LNCS, pages 401–407, 1997.

3. A. Ambainis and S. Lokam. Improved upper bounds on the simultaneous messages
complexity of the generalized addressing function. In LATIN 2000.

4. L. Babai, P. Kimmel, and S. Lokam. Simultaneous messages vs. communication.
In 12th STACS, volume 900 of LNCS, pages 361–372, 1995.

5. D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In 7th
STACS, volume 415 of LNCS, pages 37–48. Springer-Verlag, 1990.

6. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions:
Improvements and applications. J. of Cryptology, 10:17–36, 1997. Early version:
Security with small communication overhead, CRYPTO ’90.

7. A. Beimel and Y. Ishai. On private information retrieval and low-degree polyno-
mials. Manuscript, 2000.

8. A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential
for single-server private information retrieval. In 31th STOC, pages 89–98, 1999.

9. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In EUROCRYPT ’99, volume 1592 of LNCS,
pages 402–414. Springer, 1999.

10. B. Chor and N. Gilboa. Computationally private information retrieval. In 29th
STOC, pages 304–313, 1997.

11. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In 36th FOCS, pages 41–51, 1995. Journal version: JACM, 45:965–981, 1998.

12. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, 1991.



Reducing the Servers Computation in PIR 73

13. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput., 9:251-280, 1990.

14. G. Di-Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for
database private information retrieval. In 17th PODC, pages 91–100, 1998.

15. G. Di-Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information
retrieval implies oblivious transfer. In EUROCRYPT 2000, volume 1807 of LNCS,
pages 122 –138, 2000.

16. Y. Dodis. Space-Time Tradeoffs for Graph Properties. Master’s thesis, Mas-
sachusetts Institute of Technology, 1998.

17. Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private
information retrieval. In RANDOM ’98, 2nd Workshop on Randomization and
Approximation Techniques in CS, vol. 1518 of LNCS, pages 200–217. 1998.

18. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. In 30th STOC, pages 151–160, 1998.

19. Y. Ishai and E. Kushilevitz. Improved upper bounds on information theoretic
private information retrieval. In 31th STOC, pages 79 – 88, 1999.

20. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In 38th FOCS, pages 364–373, 1997.

21. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient
for non-trivial single-server private information retrieval. In EUROCRYPT 2000,
volume 1807 of LNCS, pages 104–121, 2000.

22. J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1982.
23. T. Malkin. A Study of Secure Database Access and General Two-Party Computa-

tion. PhD thesis, MIT, 2000. http://theory.lcs.mit.edu/∼cis/cis-theses.html .
24. E. Mann. Private access to distributed information. Master’s thesis, Technion -

Israel Institute of Technology, Haifa, 1998.
25. R. Ostrovsky and V. Shoup. Private information storage. In 29th STOC, pages

294–303, 1997.
26. P. Pudlák and V. Rödl. Modified Ranks of Tensors and the Size of Circuits. In

25th STOC, pages 523–531, 1993.
27. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In

ASIACRYPT ’98, volume 1514 of LNCS, pages 357–371. Springer, 1998.
28. A.C. Yao. Should tables be sorted? JACM, 28:615–628, 1981.


	Introduction 
	Definitions 
	Upper Bounds 
	 A $2$-Server Protocol with Improved Work 
	 A $k$-Server Protocol with Small Communication 
	Can the Protocols Be Improved? 
	Utilizing PIR Protocols with Logarithmic Query Length 

	Lower Bounds 
	Technical Lemmas
	Lower Bound without Extra Bits
	Lower Bound with Extra Bits

	Alternative Approaches for Saving Work 
	Batching Queries 
	Off-Line Interaction

	Open Problems 

