
Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

Số 2.CS (12) 2020   59 

Solution for Cryptographic Intervention in 

PCI-Express Data Transmission  

on FPGA Board  
Phan Van Ky, Vu Ta Cuong, La Huu Phuc

Abstract—With high-speed data transmission 

such as PCI-Express, the cryptographic 

intervention in the transmission line, which does 

not affect the data transmission process but still 

ensures the data transmission rate of the protocol, 

will be the foundation to develop cryptographic 

applications using PCI-Express protocol. In this 

article, a technical solution to capture the data 

packet of the PCI-Express protocol using FPGA 

technology will be presented. Using the standard 

library of PCI-Express on the computer to connect 

to the FPGA board, on which organizing the data 

according to the standard of PCI-Express 

protocol, at the same time to cryptographic 

intervening on the line. Thus, plaintext will be 

transmitted from the computer to the FPGA 

board via PCI-Express interface, then it will be 

organized, cryptographic intervened and 

transmitted back to the computer. 

Tóm tắt—Với đường truyền dữ liệu tốc độ cao 

như PCI-Express, việc can thiệp mật mã vào trong 

đường truyền để không ảnh hưởng đến quá trình 

truyền dữ liệu mà vẫn đảm bảo được tốc độ truyền 

dữ liệu của giao thức mang lại sẽ là cơ sở để phát 

triển các ứng dụng mật mã sử dụng giao thức PCI-

Express. Trong bài báo này sẽ trình bày một giải 

pháp kỹ thuật bắt gói tin dữ liệu của giao thức 

PCI-Express sử dụng công nghệ FPGA. Sử dụng 

bộ thư viện chuẩn PCI-Express trên máy tính để 

thực hiện kết nối tới bo mạch FPGA, qua đó trên 

FPGA thực hiện tổ chức dữ liệu theo chuẩn giao 

thức PCI-Express, đồng thời tổ chức can thiệp mật 

mã trên đường truyền. Như vậy, dữ liệu rõ sẽ được 

truyền từ máy tính xuống bo mạch FPGA thông 

qua giao tiếp PCI-Express, sau đó được tổ chức, 

can thiệp mật mã và truyền lại cho máy tính. 

Keyword—PCI-Express; FPGA; specialized MH block 

cipher algorithm. 

Từ khóa—PCI-Express; FPGA; thuật toán mã khối 

chuyên ngành MH. 

This manuscript is received on October 12, 2020. It is 

commented on November 17, 2020 and is accepted on 

November 17, 2020 by the first reviewer. It is commented on 

December 09, 2020 and is accepted on December 09, 2020 by 

the second reviewer. 

I. INTRODUCTION  

PCI-Express is a type of system bus interface, 

computer expansion card. This interface was 

released in 2004 to gradually replace the PCI, PCI-

X, and AGP interfaces of previous expansion cards 

and graphics cards. This interface is a combination 

of serial and parallel data transmission, specifically, 

PCI-Express uses many parallel connections where 

each connection transmits a data stream 

sequentially and independently from different 

paths. As a result, the PCI-Express protocol has 

shown its superiority in high-speed data 

transmission and this will be one of the trends 

toward the design of high-speed peripherals. The 

PCI-Express port is designed as PCI or PCI 

Extended, as shown in Fig. 1. 

 

Fig. 1. PCI-Express design on computer. 

In recent years, on the market, a lot of 

companies have designed and integrated PCI-

Express interface on their devices. These devices 

require significant high speed such as next 

generation SSD drives, graphic cards, Ethernet 

cards,… 

The first version of PCI-Express was 

announced by the PCI-SIG Corporation in 2004, 



Journal of Science and Technology on Information security 
 

60   No 2.CS (12) 2020    

called version 1.0. Along with the development of 

science and technology, the PCI-SIG Corporation 

has continued researches and development of the 

PCI-Express protocol to increase data 

transmission speed. Until now, this group has 

announced 5 different versions of the protocol 

which are shown in Fig. 2.   

  

Fig. 2. Versions of PCI-Express. 

For version 2.0, PCI-SIG has been improved 

to increase the speed from 2.5 GT/s of version 1.0 

to 5.0 GT/s. Versions 1.0 and 2.0 use the same 

encoding mechanism 8b/10b, version 2.0 is still 

compatible with version 1.0 in terms of hardware 

ports, thus an old card can still work on a new 

machine with version 2.0. Version 3.0 uses 

encoding mechanism 128b/130b, which will have 

lower loss than version 1.0 and 2.0.  

Nowadays, in addition to increasing the data 

rate by changing to the higher versions, PCI-SIG 

has also been designed to increase the speed of 

data transfer via PCI-Express for each of its 

versions by expanding the number of lanes of 

transmitting data. Each version is designed to 

support x1 (corresponding to the number of lanes 

of transmitting data via PCI-Express), x4, x8, x16 

and even a version designed up to x32.  

The maximum bandwidth of the PCI-Express 

versions is shown in Fig. 3.  

 

Fig. 3. Bandwidth of PCI-Express. 

With the advantage of high-speed data 

transmission, the PCI-Express protocol has been 

put into their devices by many companies and 

developers, such as next generation SSD hard 

drive, Ethernet network card, HSM device,… 

Along with the advancement of technology, 

the FPGA developers have applied the PCI-

Express protocol to their boards, alo developed 

and integrated PCI-Express IPCore on the 

software of the company. 

The advantage of the high-speed transmission 

of the PCI-Express protocol, and of the ability to 

process data in parallel of the FPGA allow users 

to create specialized equipment for high-speed 

data processing, especially cryptographic devices.  

In this article, the authors propose a solution 

that directly reads and writes the PCI-Express 

data packet, organizes packing data frame 

according to the PCI-Express standard, and 

intervening in encryption/decryption by HDL 

hardware language.   

The content of the article includes 4 sections: 

Section I - Introduction, Section II - Solution, 

Section III - the implementation on DE4 FPGA 

kit of Intel, Section IV – Results of the 

implementation and conclusion.  

II. PCI-EXPRESS SOLUTION 

A. PCI-Express IPCore from Intel 

Intel's PCI-Express IPCore [1] is designed to 

communicate with physical PCI-Express pins, to 

process this data into signals according to the 

Avalon streaming bus interface (ST-AVALON). 

The interface of Gen2x4 PCI-Express IPCore is 

shown in Fig. 4.  

 

Fig. 4. Signal pins of PCI-Express IPCore diagram. 



Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

Số 2.CS (12) 2020   61 

A signal diagram which illustrates the process 

of reading and writing data of a PCI-Express 

packet is shown in Fig. 5.  

 

Fig. 5. ST-Avalon signal diagram of PCIe IPCore. 

 tx_st_data[127:0]: Data processed from 

the physical port of PCI-Express by PCIe IPCore. 

 tx_st_sop: The start signal of the PCI-

Express packet, active high at 1’b1. 

 tx_st_eop: The end signal of the PCI-

Express packet, active high at 1’b1.  

 tx_st_valid: True data signal of PCI-

Express packets. When this signal is high, the 

tx_st_data data is valid.  

B. Implementation model 

Based on the implementation model of data 

transmission via PCI-Express developed by FPGA 

developers such as Intel and Xilinx, the authors 

built the implementation model of reading and 

writing data via PCI-Express using FPGA board, 

which is performed as shown in Fig. 6 [1], [2]. 

 

Fig. 6. Infrastructure model of a PCIe system. 

Based on the above model, the process of 

reading and writing data via PCI-Express 

interface using KIT FPGA will be divided into 2 

main parts:  

 Computer part (Windows, Linux): Sending 

the data which has to be encrypted/decrypted 

from the computer to the FPGA board and 

receiving data from the FPGA board to the 

computer, in which:  

 USER APPLICATION: Using 

functions available in the PCI-Express library, 

implementing data exchange between the 

computer and the FPGA board.  

 PCIe_SGDMA: The library is provided 

by the FPGA developers such as Intel and Xilinx. 

This library provides data handling functions for 

user applications.   

 PCIe_driver: Implementing 

communication between the computer and the 

FPGA board. 

 FPGA board: Receiving data from a 

computer via PCI-Express, extracting, 

processing, encrypting/decrypting and sending 

data back to the computer when required, in which:  

 IP_Compiler PCIe and Modular 

SGDMA: communicating and data processing 

from the physical port of PCI-Express, and 

packing data according to the standard of PCI-

Express protocol.   

 Interconnection fabric for Avalon 

interface: The connections between PCI-Express 

IPCore and USER LOGIC block. There will be 2 

standard interfaces which are Avalon streaming 

(ST-Avalon) and Avalon memory-mapped 

(Avalon MM).  

 USER LOGIC: This is the main 

processing unit, designed using Verilog HDL 

hardware language. This unit will implement the 

following functions: extracting data according to 

the standard of PCI-Express protocol; saving data 

that needs to be encrypted/decrypted; 

implementing encryption/decryption.  

Thus, in the specific applications, the 

intervention in the data transmission line of PCI-

Express using FPGA board will be implemented 

with two main blocks: intervention in USER 

APPLICATION on the computer and in USER 

LOGIC on the FPGA board.  



Journal of Science and Technology on Information security 
 

62   No 2.CS (12) 2020    

C. Solution for cryptographic intervention 

In order to implement cryptographic 

intervention in the PCI-Express data, it is 

necessary to build a data storage solution for the 

data that needs to be processed, then add 

cryptographic parameters or split them from the 

required data. To implement this solution, the 

authors propose a model of data intervention as 

shown in Fig. 7. 

FIFO LEN

Control

Avalon-ST [131:0]

RAM

Avalon-ST [131:0]

RAMwrite_adr[11..0]

RAMread_adr[11..0]

RAMread_en

RAMq_out[127:0]Data_in[127:0]

RAMwen

Data_out[131:0]

Data_in[131..128]

Fifo_empty

Fifo_out

FIFOwrite_data[31:0]

wrreq

Fifo_rdreq

Fig. 7. Block diagram of data intervention. 

This block is designed to consist of two main 

parts, one is the RAM memory to store the data 

packets of PCI-Express according to the ST-

Avalon bus interface, the other is a FIFO memory 

to store the length of those packets, which is 

calculated in word (32 bits). 

Thus, the process of data intervention of PCI-

Express interface is divided into 2 stages: 

Stage 1: Data recording process 

RAM memory is used to store the PCIe data 

packet from the st_sop signal of the packet starts 

until the st_eop end signal of the packet is turned 

1, FIFO is used to store the length of the PCI-

Express packet. 

Stage 2: Reading data 

The data reading process will be performed 

when the whole packet is stored in RAM, at the 

same time the length data of the PCIe packet is 

also written to the FIFO_LEN buffer. In this 

process, parameters are added if it is encryption, 

or removed if it is decryption. 

The data reading process performed on FPGA 

according to the authors’ solution, that is, is 

shown in Table 1.         

TABLE 1. READING RAM STATUS 

State Meaning Activity 

000 

Initializing read 

data signal 

from FIFO 

Allows reading 

FIFO_LEN; signals that 

data has been written 

001 
Waiting for 

read permission 

Allows read RAM, 

stops reading 

FIFO_LEN 

011 Moving 

Assigns the packet 

word counter; increases 

RAM memory 

100 
Reading data 

from RAM 

Raises read signal from 

RAMread_en of RAM 

to 1. Performs reading 

untils the end of the 

packet  

101 
Ending the 

packet 

Assigns Enable, EOP 

values 

D. Block diagram of cryptographic intervention 

The data encryption/decryption process is 

performed in the FPGA's processing block. The 

interface of this block is designed according to 

the ST_Avalon interface bus of the PCIe IPCore. 

The block diagram of the data processing and 

encryption/decryption is proposed as shown in 

Fig. 8. 

PROCESSING

Preprocessing BUFFER_IN

Key generation
FIFO

ENCRYPT

Encryption/

decryption
BUFFER_OUT

RX

IV, KEY

TX

Fig. 8. Model of cryptographic intervention. 

The function of blocks is determined: 

 Preprocessing block: receives data from 

PCIe IPCore, splits data to check whether the 

pushed data is encrypted or decrypted, splits the 

cryptographic parameters sent from the 

application layer of the computer. 

 Buffer_in block: stores the data which 

needs to be encrypted/decrypted in a buffer 

designed on the FPGA. 



Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

Số 2.CS (12) 2020   63 

 Key generation block: is designed to use 

many MH encryption cores to generate stream 

keys. The MH cores in the key generation block 

use the key received from the microprocessor and 

encrypt the IVs generated from the seed IV in 

CTR mode (loaded from the microprocessor) to 

generate the stream keys. 

 FIFO_ENCRYPT block: saves stream keys 

generated from the Key generation block. When 

the encryption/decryption is done, the other 

stream keys will be reset. 

 Encryption/decryption block: performs 

XOR data stored in Buffer_in block with the key 

generated from the Key generation block, stored 

in the FIFO_ENCRYPT block. 

 Buffer_out block: saves the ciphertext from 

the encryption/decryption block, and transmits it 

to the computer when requested. 

For each function block defined as above, the 

process of data encryption/decryption via PCI-

Express interface is stated as follows: The data 

that needs to be encrypted/decrypted will be sent 

to the FPGA board. At the preprocessing block, 

the data will be examined to define which data 

will be encrypted/decrypted. This data will be 

stored in the memory on the FPGA. And during 

writing data to the FPGA, the key generation 

block will take the IV and the current key to 

generate the stream keys and store it in a buffer, 

in order to require the data transmission line of the 

PCI-Express. When there is a reading signal, the 

encrypted/decrypted data will be sent to  

the computer. 

E. Design of key generation block on FPGA 

In this article, the authors use the specialized 

MH cipher algorithm to perform the 

cryptographic intervention in the transmission 

line of PCI-Express. Thus, on the FPGA board, 

MH cipher algorithm is designed as follows and 

in Fig. 9: 

 Data input: 128 bits 

 Key: 256 bits. 

 Working clock: 125 MHz, according to the 

working frequency of PCI-Express IPCore. 

 Data output: 128 bits. 

MH
Key

Data_in[127:0]

start
Data_out[127:0]

Done

Fig. 9. Signal pin diagram of MH core. 

Design of the Key generation block, depends on 

the problem and different modes. In this article, the 

authors mainly focus on the problem of examining 

the feasibility of the cryptographic intervention in 

the data transmission line of PCI-Express. 

Therefore, the authors design the Key generation 

block in CTR mode and use many MH cores to 

speed up the encryption/decryption. The solution 

for Key generation block is shown in Fig. 10. 

   

MH_26core FIFO_ENCRYPT

Key extension

IV

VXL

KEY

Key_out

127:0

127:0 127:0

  

Fig. 10. Key generation model 

The microprocessor will give the encryption 

core 128-bit IV and 512-bit key. When the FPGA 

receives the key and IV data from the 

microprocessor, combined with the start signal, 

the key expansion for the MH encryption core 

will be performed. In the problem of this article, 

key expansion is performed only one time for the 

process of reading and writing data from the 

computer to the FPGA and vice versa. When the 

key expansion is done, MH core will encrypt the 

data in CTR mode. When there is an end signal of 

the core, the output data of MH will be stored in 

FIFO_ENCRYPT memory.  

The structure of MH-26Core block is shown in 

Fig. 11. The parameters of the block are as 

follows: 

 Number of MH core: 26 cores. 

 Working frequency: 125MHz. 

 Encryption mode: CTR. 

 Input/output: 128 bits. 



Journal of Science and Technology on Information security 
 

64   No 2.CS (12) 2020    

MH_26core

clk

reset

Start[25:0]

Key_out

IV[127:0]

Done[25:0]

Data_out[127:0]

 
Fig. 11. Signal pins of MH_26core block 

The activity of each MH core in MH_26core is 

controlled by 2 signals: start and done (end of 

encryption process). Start [25:0], done [25:0] are 

the start and end control signals corresponding to 

the 26th to the 1st MH core. The start signal is 

controlled to be appropriated to the data read from 

the FPGA to the computer. 

 

Fig. 12. Creating IV for the encryption block 

In Fig. 12, block I shows the IV data control 

solution for cryptographic cores in MH_26core 

block. When the start signal is high, the seed IV 

data is assigned to IV1; when the start_core26 

signal is high, IV1 will be increased to 26.  

F. Communication between microprocessor 

and FPGA 

In this article, the authors use a microprocessor 

embedded in Intel's Stratix IV GX chip to load 

cryptographic parameters for the FPGA. This is a 

solution for the parameter loading of the authors. 

In practice, for each problem, there will be 

different ways to transmit cryptographic 

parameters.  

To perform cryptographic parameter loading 

using embedded microprocessors on FPGA, the 

authors follows the schematic diagram in Fig. 13.  

PCI-Express
Encryption 

(HDL)

Microprocessor

Peripheral

Statrix IV

NIOS II

SPI
SDCard

FIFO 

IN

FIFO 

OUT

databus

databus

IRQ

Fifo_full

Fifo_empty

MicroprocessorPeripheral FPGA

a) Diagram b) Communication

Fig. 13. Diagram of communication between 

microprocessor and FPGA. 

The FPGA part reads and writes data from 

PCIe and encrypts it; the microprocessor part uses 

a controller and loads IV, KEY for the FPGA part. 

Fig. 13a shows the functional model of the 

FPGA part and the microprocessor. In which, 

FPGA mainly reads, writes, splits packets, and 

performs encryption/decryption on FPGA 

hardware; the microprocessor mainly loads keys 

and IVs for encryption block. Fig. 13b shows 

communication between microprocessor and 

FPGA; microprocessor and SDCard; the part 

communicating with SDCard uses standard SPI 

interface; the part communicating with FPGA 

uses FIFO buffers with 32-bit data width input 

and output. 

The microprocessor performs the following 

tasks: 

 Initialize SDCard communication. 

 Initialize communication with the 

FPGA's FIFO. 

 Control reading and writing SDCard. 

 Receive and transmit data via interrupt 

request from FPGA.  

III. IMPLEMENTING ON FPGA WITH DE4 KIT  

To implement a cryptographic intervention 

solution as Section II, in this article, the authors 

will perform on the DE4 kit of Intel, using PCI-

Express IPCore that supports PCIe Gen2x4 size, 

and is performed on Quartus software version 13.1. 

Thus, with the support chip on DE4, Quartus 

software will support PCI-Express IPCore to 

perform packet capturing directly from the 

 



Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

Số 2.CS (12) 2020   65 

physical port of PCIe [4]. The implementation of 

the solution is proposed in Section II of the 

article on the DE4 kit [5] will be implemented as 

Fig. 14.  

DE4

PC PCIe
PCIe

IPCORE
DMA

CONTROLLER

RX

TX

PROCESSING 

BLOCK

RX

TX

MICRO-

PROCESSOR

Fig. 14. Implemented model on DE4. 

In the above model: 

 Computer: transmits and receives data that 

needs to be encrypted/decrypted to DE4 via PCI-

Express interface. 

 KIT DE4: Performs the functions described 

in Fig. 8, to encrypt/decrypt data sent from the 

computer.  

On DE4 board, the process of reading and 

writing data without cryptographic intervention 

will be performed as the state machine diagram as 

shown in Fig. 15, in which: 

 IDLE: standby state. 

 WRITE: the state of writing data from the 

computer to the FPGA. 

 WAIT: the transition state between the 

writing and reading data. 

 READ: reading data state from the FPGA 

to the computer.  

These signals that control data read and write 

process are as follows:  

 Write: This control signal informs that data 

is sent from the computer to the FPGA. If there is 

data sent, this signal will be high. 

 Read: This control signal informs 

reading data from the FPGA board to the 

computer. If there is a request to read data, this 

signal will be high. 

 

Fig. 15. State machine diagram performing read and 

write plaintext data. 

The working principle of the state machine is 

described as follows: 

When the data reading and writing process has 

not been performed, the device is in IDLE state. 

When it receives data write signal from the 

computer (write = 1’b1), the state will be 

transferred to WRITE process to write data to the 

FIFO. When the writing is finished (the data sent 

from the computer to the FPGA has been stored 

in FIFO), the write signal will be low (write = 

1’b0). The state of the device will turn to WAIT 

state when this state receives a signal (read = 

1’b1), which informs that the data is read from the 

FPGA to the computer. The state will be switched 

to the READ state, which will remain active until 

the data is completely sent from the FPGA to the 

computer.  

Based on the process of data reading and 

writing as shown in Fig. 15, to perform 

cryptographic intervention in the data 

transmission line, the authors build a state 

machine diagram as shown in Fig. 16. 

IDLE

WRITE

KEY 

EXPANSION

READ

KEY 

GENERATION

Write = 1

Write = 0 & flag_mh = 0

Done_key = 1

Done = 1 & read = 1
Read = 0

Flag_mh = 1

    

Fig. 16. State machine diagram of  

cryptographic intervention. 

 



Journal of Science and Technology on Information security 
 

66   No 2.CS (12) 2020    

In addition to the states such as IDLE, WRITE, 

READ as in the plaintext reading and writing 

process, the implementation of 

encryption/decryption has 2 other states, KEY 

EXPANSION and KEY GENERATION.  

 KEY EXPANSION: the state of expanding 

key for MH core. 

 KEY GENERATION: the state of pre-

generating stream keys using MH_26core block. 

The signals that control the state machine are 

as follows: 

 flag_mh: controls the key extension for the 

key generation block. If the encryption has 

performed key expansion, this signal will be high 

to signal. 

 done_key: signals that the key expansion 

is completed. 

 done: signals that the stream key has been 

created from the KEY GENERATION block. 

The working principle of the state machine 

will be stated as follows: 

At the end of the write process from the 

computer to the FPGA via PCI-Express, the key 

extension for the encryption core will be 

performed. The key extension is controlled to 

perform once via the flag_mh signal. If flag_mh 

= 1, the KEY EXPANSION status is ignored. 

In case of key expansion, when the done_key 

signal turns to 1 to indicate that key extension is 

finished, the status will be changed to KEY 

GENERATION. The key generation will pre-

generate 26 stream keys and store them in 

FIFO_ENCRYPT. After creating 26 stream keys, 

read signal turns to 1. The state transforms to 

READ to read data from the FPGA to 

the computer. 

In data read state, data from 2 FIFO which are 

FIFO_DATA and FIFO_ENCRYPT will be read 

simultaneously. Reading from FIFO_ENCRYPT 

will also control the MH_26core block to work. 

The purpose of this process is to respond that 

FIFO_ENCRYPT always contains data not to 

interfere with the process of XOR data from 

FIFO_DATA with FIFO_ENCRYPT. After the 

reading is finished, data in FIFO_ENCYPT will 

be deleted, to perform a new reading and writing 

process with new IV data. 

The block diagram is designed as shown in Fig. 

8 and Fig. 14; the key generation block is designed 

using cryptographic MH_26core block in CTR 

mode. The designed resources and blocks are 

aggregated and shown in Fig. 17 and Fig. 18.  

 

Fig. 17. Designed resources on DE4. 

IV. RESULTS 

With the solution of cryptographic 

intervention as shown in Fig. 8 and 

encryption/decryption, in this article, the authors 

used the MH algorithm in CTR mode to generate 

stream keys. The software on the computer will 

send data to the FPGA board via the PCIe 

interface and receive data back from the FPGA. 

To evaluate the data read and write speed, the data 

size from the software is changed. The authors 

performed tests with corresponding data of 1500 

words (4 bytes), 5000 words, 16,000 words and 

32,000 words.  

Test and evaluation results of the solution 

implemented on computer using the core duo chip 

are as follows: 

 For packets of 1500 words 

 

 For packets of 5000 words 

 



Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

Số 2.CS (12) 2020   67 

 For packets of 16,000 words 

 

 For packets of 32,000 words 

 

If the encrypted data has different sizes, the 

result of data read and write performance via PCI-

Express interface is different. The larger the data, 

the higher the read and write speed. The test 

results with different data sizes performed on 

computer equipped with a core duo chip are 

shown in Fig. 18. 

 

Fig. 18. The test result of data read and write. 

 

 

 

 

 

 

 

V. CONCLUSION 

In this article, the authors present a general 

solution that implements cryptographic 

intervention in the data transmission line via PCI-

Express interface using the FPGA board. The 

results of the solution achieved by evaluating on 

the DE4 kit show that intervening in the data 

transmission line of the PCI-Express interface is 

completely feasible. 

The data transmission rate via PCI-Express 

depends on the size of the data. The larger the 

data, the higher data read and write speed via PCI-

Express. 

REFERENCES 

[1] Intel, “DE4 PCIe Qsys example designs”, 

February 2, 2018. 

[2] Intel, “PCI-Express high performance reference 

design”, 2014. 

[3] PCI-SIG, “PCI Express Base Specification 

Revision 2.01”, March 4, 2009. 

[4] Intel, “IP Compiler for PCI Express user guide”, 

August 2014.  

[5] Altera Corp (2016), “DE4 User manual”. url: 

ftp://ftp.altera.com/up/pub/Altera_Material/Boa

rds/DE4/DE4_User_Manual.pdf 

[6] Ankita R. Tembhare, Dr.Pramod B. Patil, 

“Design & Implementation of PCI Express BUS 

Physical layer using VHDL”, IRITCC July 

2014, Vl.2 Issue 7. 

[7] Kun Cheng, Weiyue Liu, Qi Shen, Shengkai 

Liao, “Design and Implementation of High-

throughput PCIe with DMA Architecture 

between FPGA and PowerPC”, Journal of IEEE 

Transactions on Nuclear Science, 2018. 

0

1

2

3

4

0 20000 40000 60000 80000

G
b

p
s

word



Journal of Science and Technology on Information security 
 

68   No 2.CS (12) 2020    

ABOUT THE AUTHOR 

 

Phan Van Ky 

Workplace: Institute of Cryptographic 

Science and Technology 

Email: pvk.hvktqs@gmail.com 

Education: Received bachelor’s degree 

in 2013, received master’s degree in 

2017, in Saint Petersburg Electronical 

University. 

Current research field: integrated circuit technology, FPGA. 

 

Vu Ta Cuong 

Workplace: Institute of 

Cryptographic Science and 

Technology 

Email: vutacuong109@gmail.com 

Education: Received bachelor's 

degree in 2011, master's degree in 

2013, and PhD in 2016, in Radio Electronics, Kharkiv 

Aerospace University, Ukraine. 

Current research field: PKI Token, cryptographic 

engineering. 

 

 

 

 

La Huu Phuc 

Workplace: Institute of 

Cryptographic Science and 

Technology 

Email: phucpvkt@hotmail.com 

Education: Received bachelor's degree 

in 1998, master’s degree in 2002, and 

PhD in 2015 in Electronic engineering.   

Current research field: Designing and producing security 

device, specialized cipher machine. 

 

 

 

 

 

 

 

 

 

 

 

 


