Khoa hoc va Cong nghé trong linh vuc An toan thong tin

Solution for Cryptographic Intervention in
PCI-Express Data Transmission
on FPGA Board

Abstract—With high-speed data transmission
such as PCIl-Express, the cryptographic
intervention in the transmission line, which does
not affect the data transmission process but still
ensures the data transmission rate of the protocol,
will be the foundation to develop cryptographic
applications using PCI-Express protocol. In this
article, a technical solution to capture the data
packet of the PCI-Express protocol using FPGA
technology will be presented. Using the standard
library of PCI-Express on the computer to connect
to the FPGA board, on which organizing the data
according to the standard of PCI-Express
protocol, at the same time to cryptographic
intervening on the line. Thus, plaintext will be
transmitted from the computer to the FPGA
board via PCI-Express interface, then it will be
organized, cryptographic intervened and
transmitted back to the computer.

Tom tit—Véi dwong truyén dir liéu tée dd cao
nhu PCI-Express, viéc can thiép mat ma vao trong
dwong truyén dé khong anh hwéng dén qua trinh
truyén dir liéu ma vin dam bao dwgc tée dd truyén
dir liéu caa giao thirc mang lai sé 1a co sé dé phat
trién cac ing dung mat ma sir dung giao thirc PCI-
Express. Trong bai bao nay sé trinh bay mét giai
phap ky thuat bit géi tin dir liéu cha giao thirc
PCI-Express sir dung cong nghé FPGA. Sir dung
bd thw vién chuin PCI-Express trén may tinh dé
thuc hién két ndi téi bo mach FPGA, qua do trén
FPGA thyc hién td chirc dir liéu theo chuén giao
thirc PCI-Express, dong thoi té chirc can thiép mat
mi trén dwong truyén. Nhuw vy, dir liéu rd sé duwoc
truyén tir may tinh xuéng bo mach FPGA théng
qua giao tiép PCI-Express, sau dé dwoc to chuc,
can thiép mat ma va truyén lai cho may tinh.

Keyword—PCI-Express; FPGA; specialized MH block
cipher algorithm.

Tir kh6a—PCI-Express; FPGA; thugt toan ma khéi
chuyén nganh MH.

This manuscript is received on October 12, 2020. It is
commented on November 17, 2020 and is accepted on
November 17, 2020 by the first reviewer. It is commented on

December 09, 2020 and is accepted on December 09, 2020 by
the second reviewer.

Phan Van Ky, Vu Ta Cuong, La Huu Phuc
I. INTRODUCTION

PCI-Express is a type of system bus interface,
computer expansion card. This interface was
released in 2004 to gradually replace the PCI, PCI-
X, and AGP interfaces of previous expansion cards
and graphics cards. This interface is a combination
of serial and parallel data transmission, specifically,
PCI-Express uses many parallel connections where
each connection transmits a data stream
sequentially and independently from different
paths. As a result, the PCI-Express protocol has
shown its superiority in high-speed data

transmission and this will be one of the trends
toward the design of high-speed peripherals. The
PCI-Express port is designed as PCl or PCI
Extended, as shown in Fig. 1.

PCl slot 2
PCl slot 1
PCle 2.0 x16_2 slot (blue, single at x 16 or dual at x8 link)
PCle 2.0 x4_1 slot
PCle 2.0 x1_1 slot
PCle 2.0 x16_1 slot (gray, at x 8 link)

Fig. 1. PCI-Express design on computer.

In recent years, on the market, a lot of
companies have designed and integrated PCI-
Express interface on their devices. These devices
require significant high speed such as next
generation SSD drives, graphic cards, Ethernet
cards,...

The first version of PCI-Express was
announced by the PCI-SIG Corporation in 2004,

S6 2.CS (12) 2020 59

Journal of Science and Technology on Information security

called version 1.0. Along with the development of
science and technology, the PCI-SIG Corporation
has continued researches and development of the
PCI-Express protocol to increase data
transmission speed. Until now, this group has
announced 5 different versions of the protocol
which are shown in Fig. 2.

PCI ¢
2017
0.
PCle 4.0 @ 16GT/s
2010

.PCIe 3.0@8GTIs

PCle® Roadmap
2006

Continuous improvement with
PCle 2.0 @ 5.0GT/s datara well as usage

models; doubling ban:
and improving capabilities
2003

@ PCle 1.0 @ 2.5GTis © PCI-SIG 2019

Fig. 2. Versions of PCI-Express.

For version 2.0, PCI-SIG has been improved
to increase the speed from 2.5 GT/s of version 1.0
to 5.0 GT/s. Versions 1.0 and 2.0 use the same
encoding mechanism 8b/10b, version 2.0 is still
compatible with version 1.0 in terms of hardware
ports, thus an old card can still work on a new
machine with version 2.0. Version 3.0 uses
encoding mechanism 128b/130b, which will have
lower loss than version 1.0 and 2.0.

Nowadays, in addition to increasing the data
rate by changing to the higher versions, PCI-SIG
has also been designed to increase the speed of
data transfer via PCI-Express for each of its
versions by expanding the number of lanes of
transmitting data. Each version is designed to
support x1 (corresponding to the number of lanes
of transmitting data via PCI-Express), x4, X8, X16
and even a version designed up to x32.

The maximum bandwidth of the PCI-Express
versions is shown in Fig. 3.

x1 x4 x8 x16
PCle 1.0 250MB/s 1GB/s 2GB/s 4 GB/s
PCle2.0 500MB/s 2 GB/s 4 GB/s 8 GB/s
PCle3.0 1GB/s 4 GB/s 8 GB/s 16 GB/s
PCle4.0 2GB/s 8 GB/s 16 GB/s 32GB/s
PCle5.0 4GB/s 16 GB/s 32GB/s 64 GB/s

Fig. 3. Bandwidth of PCI-Express.

60 No 2.CS (12) 2020

With the advantage of high-speed data
transmission, the PCI-Express protocol has been
put into their devices by many companies and
developers, such as next generation SSD hard
drive, Ethernet network card, HSM device,...

Along with the advancement of technology,
the FPGA developers have applied the PCI-
Express protocol to their boards, alo developed
and integrated PCI-Express IPCore on the
software of the company.

The advantage of the high-speed transmission
of the PCI-Express protocol, and of the ability to
process data in parallel of the FPGA allow users
to create specialized equipment for high-speed
data processing, especially cryptographic devices.

In this article, the authors propose a solution
that directly reads and writes the PCI-Express
data packet, organizes packing data frame
according to the PCI-Express standard, and
intervening in encryption/decryption by HDL
hardware language.

The content of the article includes 4 sections:
Section | - Introduction, Section Il - Solution,
Section 11 - the implementation on DE4 FPGA
kit of Intel, Section IV — Results of the
implementation and conclusion.

Il. PCI-EXPRESS SOLUTION
A. PCI-Express IPCore from Intel

Intel's PCI-Express IPCore [1] is designed to
communicate with physical PCI-Express pins, to
process this data into signals according to the
Avalon streaming bus interface (ST-AVALON).
The interface of Gen2x4 PCI-Express IPCore is
shown in Fig. 4.

tx st data[127:0] FCII module

cal blk clk
pld clk
refelk

rx_ 0

1x_st data[127:0]

core clk out

tx out0
rx_inl
rx_in2
rx_in3

tX st empty

tx_outl
tx_out2

tx_out3

rx st empty

tX st eop IX st eop
tX st err IX st err
x_st sop 1X_st sop
tx st valid rx st valid

Fig. 4. Signal pins of PCI-Express IPCore diagram.

Khoa hoc va Cong nghé trong linh vuc An toan thong tin

A signal diagram which illustrates the process
of reading and writing data of a PCI-Express
packet is shown in Fig. 5.

LUyt

bi_st_dlata[1270] .IOUU ‘lCC .[CC ‘ICC ‘XCCCCOH

x_st_sop
x_st eop _\

)
\
\
tstempy \
)
)
\

oo Joe Jee oo Moo Jeo oo

-

t_st_ready

=
U

st valid

\
\
\
)
)
)

i st er

Fig. 5. ST-Avalon signal diagram of PCle IPCore.

e tx st data[127:0]: Data processed from
the physical port of PCI-Express by PCle IPCore.

e tx st sop: The start signal of the PCI-
Express packet, active high at 1°b1.

e tx st eop: The end signal of the PCI-
Express packet, active high at 1°b1.

e tx st valid: True data signal of PCI-
Express packets. When this signal is high, the
tx_st data data is valid.

B. Implementation model

Based on the implementation model of data
transmission via PCI-Express developed by FPGA
developers such as Intel and Xilinx, the authors
built the implementation model of reading and
writing data via PCI-Express using FPGA board,
which is performed as shown in Fig. 6 [1], [2].

FPGA

Windows

USER LOGIC USER APPLICATION

}
_ Y

Arllcrcmlnccli(m fabric ['01> PCIE_SGOMA

avalon interface
\ A I A

|
IP_Compiler PCle

+ PCle.driver
Modular SGDMA
[[

Fig. 6. Infrastructure model of a PCle system.

Based on the above model, the process of
reading and writing data via PCI-Express
interface using KIT FPGA will be divided into 2
main parts:

e Computer part (Windows, Linux): Sending
the data which has to be encrypted/decrypted
from the computer to the FPGA board and
receiving data from the FPGA board to the
computer, in which:

= USER APPLICATION: Using
functions available in the PCI-Express library,
implementing data exchange between the
computer and the FPGA board.

= PCle_SGDMA: The library is provided
by the FPGA developers such as Intel and Xilinx.
This library provides data handling functions for
user applications.

= PCle_driver: Implementing
communication between the computer and the
FPGA board.

e FPGA board: Receiving data from a
computer via PCI-Express, extracting,
processing, encrypting/decrypting and sending
data back to the computer when required, in which:

= |P_Compiler PCle and Modular
SGDMA: communicating and data processing
from the physical port of PCI-Express, and
packing data according to the standard of PCI-
Express protocol.

= Interconnection fabric for Avalon
interface: The connections between PCI-Express
IPCore and USER LOGIC block. There will be 2
standard interfaces which are Avalon streaming
(ST-Avalon) and Avalon memory-mapped
(Avalon MM).

= USER LOGIC: This is the main
processing unit, designed using Verilog HDL
hardware language. This unit will implement the
following functions: extracting data according to
the standard of PCI-Express protocol; saving data
that needs to be encrypted/decrypted;
implementing encryption/decryption.

Thus, in the specific applications, the
intervention in the data transmission line of PCI-
Express using FPGA board will be implemented
with two main blocks: intervention in USER
APPLICATION on the computer and in USER
LOGIC on the FPGA board.

S 2.CS (12) 2020 61

Journal of Science and Technology on Information security

C. Solution for cryptographic intervention

In order to implement cryptographic
intervention in the PCI-Express data, it is
necessary to build a data storage solution for the
data that needs to be processed, then add
cryptographic parameters or split them from the
required data. To implement this solution, the
authors propose a model of data intervention as
shown in Fig. 7.

Avalon-ST [131:0] Avalon-ST [131:0

Data_in[127:0] RAM(q_out[127:0]

RAMwrite_adr[11..0

RAMwen RAM

Data_in[131..128]

RAMread_adr[11..0

RAMread_en

Data_out[131:0]

Control

Fifo_empty
Fifo_out

||

FIFOwrite_data[31:0]

wrreq

FIFO LEN

Fifo_rdreq

Fig. 7. Block diagram of data intervention.

This block is designed to consist of two main
parts, one is the RAM memory to store the data
packets of PCI-Express according to the ST-
Avalon bus interface, the other is a FIFO memory
to store the length of those packets, which is
calculated in word (32 bits).

Thus, the process of data intervention of PCI-
Express interface is divided into 2 stages:

Stage 1: Data recording process

RAM memory is used to store the PCle data
packet from the st_sop signal of the packet starts
until the st_eop end signal of the packet is turned
1, FIFO is used to store the length of the PCI-
Express packet.

Stage 2: Reading data

The data reading process will be performed
when the whole packet is stored in RAM, at the
same time the length data of the PCle packet is
also written to the FIFO_LEN buffer. In this
process, parameters are added if it is encryption,
or removed if it is decryption.

The data reading process performed on FPGA
according to the authors’ solution, that is, is
shown in Table 1.

62 No 2.CS (12) 2020

TABLE 1. READING RAM STATUS

State Meaning Activity
Initializing read | Allows reading
000 | data signal FIFO_LEN; signals that
from FIFO data has been written
. Allows read RAM,
001 \r/(\e/;(;tme%r;c:;sion stops reading
P FIFO_LEN
Assigns the packet
011 | Moving word counter; increases
RAM memory
Raises read signal from
Reading data RAMread_en of RAM
100 from RgAM to 1. Performs reading
untils the end of the
packet
Ending the Assigns Enable, EOP
101
packet values

D. Block diagram of cryptographic intervention

The data encryption/decryption process is
performed in the FPGA's processing block. The
interface of this block is designed according to
the ST_Awvalon interface bus of the PCle IPCore.
The block diagram of the data processing and
encryption/decryption is proposed as shown in
Fig. 8.

PROCESSING

Preprocessing » BUFFER_IN —l

Encryption/
decryption

FIFO
ENCRYPT

Fig. 8. Model of cryptographic intervention.
The function of blocks is determined:

e Preprocessing block: receives data from
PCle IPCore, splits data to check whether the
pushed data is encrypted or decrypted, splits the
cryptographic parameters sent from the
application layer of the computer.

e Buffer_in block: stores the data which
needs to be encrypted/decrypted in a buffer
designed on the FPGA.

|
|
|
|
|
|
|
BUFFER_OUT —+
|
|
|
|
|
|
|
|
|

Khoa hoc va Cong nghé trong linh vuc An toan thong tin

e Key generation block: is designed to use
many MH encryption cores to generate stream
keys. The MH cores in the key generation block
use the key received from the microprocessor and
encrypt the IVs generated from the seed IV in
CTR mode (loaded from the microprocessor) to
generate the stream keys.

e FIFO_ENCRYPT block: saves stream keys
generated from the Key generation block. When
the encryption/decryption is done, the other
stream keys will be reset.

e Encryption/decryption block: performs
XOR data stored in Buffer_in block with the key
generated from the Key generation block, stored
in the FIFO_ENCRYPT block.

e Buffer_out block: saves the ciphertext from
the encryption/decryption block, and transmits it
to the computer when requested.

For each function block defined as above, the
process of data encryption/decryption via PCI-
Express interface is stated as follows: The data
that needs to be encrypted/decrypted will be sent
to the FPGA board. At the preprocessing block,
the data will be examined to define which data
will be encrypted/decrypted. This data will be
stored in the memory on the FPGA. And during
writing data to the FPGA, the key generation
block will take the IV and the current key to
generate the stream keys and store it in a buffer,
in order to require the data transmission line of the
PCI-Express. When there is a reading signal, the
encrypted/decrypted data will be sent to
the computer.

E. Design of key generation block on FPGA

In this article, the authors use the specialized
MH cipher algorithm to perform the
cryptographic intervention in the transmission
line of PCI-Express. Thus, on the FPGA board,
MH cipher algorithm is designed as follows and
in Fig. 9:

e Data input: 128 bits

o Key: 256 bits.

e Working clock: 125 MHz, according to the
working frequency of PCI-Express IPCore.

e Data output: 128 bits.

start |
Data_in[127:0] Data_out[lﬁ.O]
MH
Key | Done
—_—>

Fig. 9. Signal pin diagram of MH core.

Design of the Key generation block, depends on
the problem and different modes. In this article, the
authors mainly focus on the problem of examining
the feasibility of the cryptographic intervention in
the data transmission line of PCI-Express.
Therefore, the authors design the Key generation
block in CTR mode and use many MH cores to
speed up the encryption/decryption. The solution
for Key generation block is shown in Fig. 10.

» KEY —uo—>

Key extension

VXL Key_out
\—P v

Fig. 10. Key generation model

—o—>| MH_26c0r8 —mo—> FIFO_ENCRYPT

The microprocessor will give the encryption
core 128-bit IV and 512-bit key. When the FPGA
receives the key and IV data from the
microprocessor, combined with the start signal,
the key expansion for the MH encryption core
will be performed. In the problem of this article,
key expansion is performed only one time for the
process of reading and writing data from the
computer to the FPGA and vice versa. When the
key expansion is done, MH core will encrypt the
data in CTR mode. When there is an end signal of
the core, the output data of MH will be stored in
FIFO_ENCRYPT memory.

The structure of MH-26Core block is shown in
Fig. 11. The parameters of the block are as
follows:

e Number of MH core: 26 cores.
e Working frequency: 125MHz.
e Encryption mode: CTR.

¢ Input/output: 128 bits.

S6 2.CS (12) 2020 63

Journal of Science and Technology on Information security

clk —>

reset — » — Done[25:0]

Start[25:0]—> MH_26core

Key out — Data_out[127:0]

IV[127:0]

Fig. 11. Signal pins of MH_26core block

The activity of each MH core in MH_26core is
controlled by 2 signals: start and done (end of
encryption process). Start [25:0], done [25:0] are
the start and end control signals corresponding to
the 26" to the 1% MH core. The start signal is
controlled to be appropriated to the data read from
the FPGA to the computer.

Done[0:25]
IVI+0 ""~-er_
» Core 1 | 1370—p =3
start Start core?6
Vi+1
i i ——» Core 2 |—uro—»
7]
7 I L aw
—Ive 1 -
V1 : @
|
» Core 26 —1
NI Core 26 —»)

Fig. 12. Creating 1V for the encryption block

In Fig. 12, block I shows the 1V data control
solution for cryptographic cores in MH_26core
block. When the start signal is high, the seed IV
data is assigned to 1V1; when the start_core26
signal is high, IV1 will be increased to 26.

F. Communication between microprocessor
and FPGA

In this article, the authors use a microprocessor
embedded in Intel's Stratix IV GX chip to load
cryptographic parameters for the FPGA. This is a
solution for the parameter loading of the authors.
In practice, for each problem, there will be
different ways to transmit cryptographic
parameters.

To perform cryptographic parameter loading
using embedded microprocessors on FPGA, the
authors follows the schematic diagram in Fig. 13.

64 No 2.CS (12) 2020

|
p o Sl Peripheral I Microprocessor I FPGA
|
<¢‘> Encryption I databusl
PCI-Express (HDL) - < — Fu" FIFO
SDCard I —I IN
NIOS I I

databjis
FIFO

Fifo_empty out

Peripheral

b) Communication

|
|

|

|

|

|

|

I

|

|

|

I
|

|

|

] |
Microprocessor | |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

I IRQ
I B

I

a) Diagram
Fig. 13. Diagram of communication between
microprocessor and FPGA.

The FPGA part reads and writes data from
PCle and encrypts it; the microprocessor part uses
a controller and loads IV, KEY for the FPGA part.

Fig. 13a shows the functional model of the
FPGA part and the microprocessor. In which,
FPGA mainly reads, writes, splits packets, and
performs encryption/decryption on FPGA
hardware; the microprocessor mainly loads keys
and IVs for encryption block. Fig. 13b shows
communication between microprocessor and
FPGA; microprocessor and SDCard; the part
communicating with SDCard uses standard SPI
interface; the part communicating with FPGA
uses FIFO buffers with 32-bit data width input
and output.

The microprocessor performs the following
tasks:

e |nitialize SDCard communication.

e |nitialize communication with the

FPGA's FIFO.
e Control reading and writing SDCard.

e Receive and transmit data via interrupt
request from FPGA.

I11. IMPLEMENTING ON FPGA wiITH DE4 KIT

To implement a cryptographic intervention
solution as Section 11, in this article, the authors
will perform on the DE4 kit of Intel, using PCI-
Express IPCore that supports PCle Gen2x4 size,
and is performed on Quartus software version 13.1.

Thus, with the support chip on DE4, Quartus
software will support PCI-Express IPCore to
perform packet capturing directly from the

Khoa hoc va Cong nghé trong linh vuc An toan thong tin

physical port of PCle [4]. The implementation of
the solution is proposed in Section Il of the
article on the DE4 kit [5] will be implemented as
Fig. 14.

—RX—>! —RX—p|

MICRO-

DMA PROCESSING k—
PROCESSOR

IPCORE CONTROLLER BLOCK

k—TX—] K—TX—

I
I
I
I
I
PC k—PCIe—Jl e
I
I
I
I

Fig. 14. Implemented model on DEA4.
In the above model:

e Computer: transmits and receives data that
needs to be encrypted/decrypted to DE4 via PCI-
Express interface.

e KIT DE4: Performs the functions described
in Fig. 8, to encrypt/decrypt data sent from the
computer.

On DE4 board, the process of reading and
writing data without cryptographic intervention
will be performed as the state machine diagram as
shown in Fig. 15, in which:

e |IDLE: standby state.

e WRITE: the state of writing data from the
computer to the FPGA.

e WAIT: the transition state between the
writing and reading data.

e READ: reading data state from the FPGA
to the computer.

These signals that control data read and write
process are as follows:

e Write: This control signal informs that data
is sent from the computer to the FPGA. If there is
data sent, this signal will be high.

e Read: This control signal informs
reading data from the FPGA board to the
computer. If there is a request to read data, this
signal will be high.

WRITE |

Write =0

G
Read=0 Read=1
| READ

Fig. 15. State machine diagram performing read and
write plaintext data.

Write =1

IDLE

The working principle of the state machine is
described as follows:

When the data reading and writing process has
not been performed, the device is in IDLE state.
When it receives data write signal from the
computer (write = 1°bl), the state will be
transferred to WRITE process to write data to the
FIFO. When the writing is finished (the data sent
from the computer to the FPGA has been stored
in FIFO), the write signal will be low (write =
1’b0). The state of the device will turn to WAIT
state when this state receives a signal (read =
1’b1), which informs that the data is read from the
FPGA to the computer. The state will be switched
to the READ state, which will remain active until
the data is completely sent from the FPGA to the
computer.

Based on the process of data reading and
writing as shown in Fig. 15, to perform
cryptographic intervention in the data
transmission line, the authors build a state
machine diagram as shown in Fig. 16.

WRITE I

‘Write = 0 & flag_mh =0
Write = 1
KEY
EXPANSION

i

| IDLE Flag_mh=1

Done_key =1

KEY
GENERATION

Read =0

Done=1&read=1
&2

Fig. 16. State machine diagram of
cryptographic intervention.

S6 2.CS (12) 2020 65

Journal of Science and Technology on Information security

In addition to the states such as IDLE, WRITE,
READ as in the plaintext reading and writing
process, the implementation of
encryption/decryption has 2 other states, KEY
EXPANSION and KEY GENERATION.

o KEY EXPANSION: the state of expanding
key for MH core.

e KEY GENERATION: the state of pre-
generating stream keys using MH_26core block.

The signals that control the state machine are
as follows:

e flag_mh: controls the key extension for the
key generation block. If the encryption has
performed key expansion, this signal will be high
to signal.

e done_key: signals that the key expansion
is completed.

e done: signals that the stream key has been
created from the KEY GENERATION block.

The working principle of the state machine
will be stated as follows:

At the end of the write process from the
computer to the FPGA via PCI-Express, the key
extension for the encryption core will be
performed. The key extension is controlled to
perform once via the flag_mh signal. If flag_mh
=1, the KEY EXPANSION status is ignored.

In case of key expansion, when the done_key
signal turns to 1 to indicate that key extension is
finished, the status will be changed to KEY
GENERATION. The key generation will pre-
generate 26 stream keys and store them in
FIFO_ENCRYPT. After creating 26 stream keys,
read signal turns to 1. The state transforms to
READ to read data from the FPGA to
the computer.

In data read state, data from 2 FIFO which are
FIFO_DATA and FIFO_ENCRYPT will be read
simultaneously. Reading from FIFO_ENCRYPT
will also control the MH_26core block to work.
The purpose of this process is to respond that
FIFO_ENCRYPT always contains data not to
interfere with the process of XOR data from
FIFO_DATA with FIFO_ENCRYPT. After the
reading is finished, data in FIFO_ENCYPT will
be deleted, to perform a new reading and writing
process with new IV data.

66 No 2.CS (12) 2020

The block diagram is designed as shown in Fig.
8 and Fig. 14; the key generation block is designed
using cryptographic MH_26core block in CTR
mode. The designed resources and blocks are
aggregated and shown in Fig. 17 and Fig. 18.

Compilation Hierarchy Node \Combinationz LCRegisters Block Memory Bits 18-bit Elem
1 4] g THEE) 58IT() 6001666 4 |
1 » |DE4 Qsys:DE4 Qsys_nst| 1920(0) 1335 (1) 1130432 4 |
2 - |Delay:Delay_nst| 1(0) 0@ 0 0 I
3 » alt_pl:ALTPLL inst]| 0@ 0@ 0 i |
4 ety _config:altoy_inst| 500 (0) 38 () i 0 I
5) |dma:dma_module| 883(0) 956 (0 511394 0 I
& ' |pde:pdie_inst| 171 (0) 181(0) i 0 I
7 » Jad_hub:auto_hub| 18 (1) 97(0) 0 0 I
B + Jused_logic:tes. sed_Jogic_inst| 28394 (1346) 44712(33%) 4259840 0 I

Fig. 17. Designed resources on DE4.

IV. RESULTS
With the solution of cryptographic
intervention as shown in Fig. 8 and

encryption/decryption, in this article, the authors
used the MH algorithm in CTR mode to generate
stream keys. The software on the computer will
send data to the FPGA board via the PCle
interface and receive data back from the FPGA.
To evaluate the data read and write speed, the data
size from the software is changed. The authors
performed tests with corresponding data of 1500
words (4 bytes), 5000 words, 16,000 words and
32,000 words.

Test and evaluation results of the solution
implemented on computer using the core duo chip
are as follows:

e For packets of 1500 words

hoi gian q}\l goi tin 0.0057 MB la 0.8746 ms

oc do ghi du lieu: B8.5991 Gh/s
rl'}ml gian doc goi tin @.0857 MB la 0.0340 ns
'Ioc r]n doc du 11eu 1.3167 Gh/s

‘4d8h9b840thGarl27esfds7b0d9e39172a65arld3d1f486'72a42b76222h73ea868f88bb756f827‘?ce
1£49899afc?Beeq4f351c34ee59a9f3646b418h9a634f 735282c4f 4f 9de9bf 4a7e82476d4362h94F
h3095518497c5a8d3898Bc2ha?65e8edd80hdf 9975d8e4e5ce2e8aB66a554f 4a?f dh?8h4c2h5£42
42f6841ccBf £5666e69f3hah4ca28970fB?752347a6d95f2d91ela5ac942h5e7d6h2179df959cadl
ﬂ5831ah4f6150faﬂSeB?el2397d19d7l1c13ffls85E932alcfa2flddS9d54dflea723c2ﬂ3e4el3395f
c15 28aab35746337 35 7084\‘]'“ ?hc 3h9370dd08
74 cB97eB6ac6364d! 4h5ddb)eae 4a7e 471a6e5
011d5565f9a93e9882331£hB1e2d 49 bf 4d?7?7abha52757f 900
#823542242642188452¢2deBaeBhE66d0F 49d9c16e0a9cd4f a8243e1Bo2d50F52b54h2c57
85032b@543563bfa1cd9363c616f! 4dbf£145e32h4e1fc683dc1f58a5e064209fd52e182c2f8a8

El(hac nhau 1500 tu

o For packets of 5000 words

| C:\Users\KYPHAN\Desktop\PCIE\CLK_PCIE test V52010 2~

Thoi gian ghi goi tin 0.0191 MB la 0.1046 ms
Toc do ghi du 11eu 1.4244 Gh/s

Thoi gian doc goi tin @. 8191 MB la 8.8596 ms
Toc do doc du lieu: 2.4997
4:101)‘71)84::6tharlZ7e8fd67b0d9e37172a65adr]3rllf48672a42b76222b73ea868f80bh756f8277ce
1£49899af c?@ee44f351c34ee59a9f 3646h418h9a634f 735282c4f 4f 9deIhf 4a?7e82476d4362h94f
bh3095518497c5a8d3898Bc2ha?65e8edd8Bhdf 9975d8ede5ce2e8aB66a554f 4a?f dh?8h4c2h5£42
842f6841ccOf £5666e69f 3bahdca28970f0752347a6d95F2d91ela5ac942h5e?d6h2179df 959 cadl
d5031ah4f615cf aB5e87e02397d19d?701c13£ d8050932alcfa2ddd59d54df 1ea?23c203e4e13395f
Bc1572Baah35746337235f ¢ 7004d3f 47hc3d9d2d6b143a??76da829cca95383893dd2303h9370d400
[2742022c897eB6ac6364d90dcce4h5ddh96df 3£ £ c1764701 £ h5e28684641263BeaeB4a?e2471abe5
?ccB2cB11d5565f9a93e9882331f h@1e2d22caf 49bec22f5c?a?55df 3514e1bf 4d77aha52757f 900
10823542a42642180452c2de@aeBbf 66d0f d9d9cibeBadcd4f aB443e1Bc2d50f52h54h2c5747f £58
85032hB543563hfa1cd9363c616£5684dbff145e32h4e1fc6@3dc1f58a5e064209fd52e182¢c2f8a8

’l(hac nhau 5800 tu

Khoa hoc va Cong nghé trong linh vuc An toan thong tin

e For packets of 16,000 words

‘I C:\Users\KYPHAN\Deskto

hoi gian ghi goi tin B.0618 MB la 0.2128 ms
oc do ghi du lieu: 2.2489 Gh/s

hoi gian doc goi tin B.08610 Mﬂ la 0.1492 ms

oc do doc du lieu: 3.1954 Gh/s

u lieu doc len:

d@h9h84c6fhbad2?e8f d6?hBd9e39172a65add3d1£48672a42h?76222h73ea868f 8Bhh756£8277ce
£49899af c?Bee44f351c34ee59a9f 3646 h418h9a634f 735282c4f 4f 9de Ihf 4a?7e82476d4362h94f
h30895518497¢5a8d3898@c2ha?65e8edd8@hdf 9975d8e4eS5ce2e8aB66a554f 4a?f dh?8h4c2h5f42
426841 ccBf f5666e69f 3hahdca28970f 8752347a6d95f 2d91ela5ac942h5e7d6b2179df 959cabl
5831ah4f615cf aB5e87e@2397d19d701c13£d8058932a1cfa2ddd59d54df 1ea?23c203e4e13395F
c1572@aah35746337235f ¢ 7004d3f 47hc3d9d2d6b143a?776da829cca?5383893dd2303h9370dd00
742022c097eB6ac6364d90dcce4h5ddb96df 3£ £ c1764701f h5e28684641263BeacB4a?e2471abes
'ccB2cB11d5565F 9a93e9882331fhBle2d22caf 49bec22f5¢7a?55df 3514e1hf 4d?77aha52757f 900
#823542a42642180452c 2deBae@hf 66d0f d9d9c16eB@afcd4f a8443e1Bc2d50f 52h54h2c5747F £58
50832b8543563hf alcd9363c616£5684dhf f145e32hdel1f c6@3dc1f58a5eB64209f d52e182c2f8a8

hac nhau 16880 tu

e For packets of 32,000 words

i C:\Users\KYPHAN\Desktoj

hoi gian ghi goi tin @.1221 MB la 8.2613 nms

oc do ghi du lieu: 3.6492 Gh/s

hoi gian doc goi tin @.1221 MB la 0.2400 ns

oc do doc du lieu: 3.9733 Gh/s
dBhh84c6fhbad2?e8fd67hBd9e39172a65add3d1f 486 72a42h?76222h73eaB68£8Bbh756£8277¢

#823542a42642180452c2deBae@bf 66d0f d9d9c16eBadcd4f a8443e10c2d50f 52h54h2c5747££5
5032h8543563hf a1cd9363c616£5684dhf £145e32hde1fc6@3dc1£58a5e@64209fd52e182¢2f8a

hac nhau 32000 tu

If the encrypted data has different sizes, the
result of data read and write performance via PCI-
Express interface is different. The larger the data,
the higher the read and write speed. The test
results with different data sizes performed on
computer equipped with a core duo chip are
shown in Fig. 18.

4
>
3
a
o2
o /
1
01
0 20000 40000 60000 80000
word

Fig. 18. The test result of data read and write.

V. CONCLUSION

In this article, the authors present a general
solution that implements cryptographic
intervention in the data transmission line via PCI-
Express interface using the FPGA board. The
results of the solution achieved by evaluating on
the DE4 kit show that intervening in the data
transmission line of the PCI-Express interface is
completely feasible.

The data transmission rate via PCI-Express
depends on the size of the data. The larger the
data, the higher data read and write speed via PCI-
Express.

REFERENCES
[1] Intel, “DE4 PCle Qsys example designs”,
February 2, 2018.
[2] Intel, “PCI-Express high performance reference
design”, 2014.
[3] PCI-SIG, “PCI Express Base Specification
Revision 2.01”, March 4, 2009.
[4] Intel, “IP Compiler for PCI Express user guide”,
August 2014,
[5] Altera Corp (2016), “DE4 User manual”. url:
ftp://ftp.altera.com/up/pub/Altera_Material/Boa
rds/DE4/DE4_User_Manual.pdf

Ankita R. Tembhare, Dr.Pramod B. Patil,
“Design & Implementation of PCI Express BUS
Physical layer using VHDL”, IRITCC July
2014, V1.2 Issue 7.

(6]

[71 Kun Cheng, Weiyue Liu, Qi Shen, Shengkai
Liao, “Design and Implementation of High-
throughput PCle with DMA Architecture
between FPGA and PowerPC”, Journal of IEEE

Transactions on Nuclear Science, 2018.

S6 2.CS (12) 2020 67

Journal of Science and Technology on Information security

ABOUT THE AUTHOR

Phan Van Ky

Workplace: Institute of Cryptographic
= =) Science and Technology

Email: pvk.hvktgs@gmail.com

Education: Received bachelor’s degree
in 2013, received master’s degree in
2017, in Saint Petersburg Electronical

— |

University.
Current research field: integrated circuit technology, FPGA.

Vu Ta Cuong
Workplace: Institute of
by Cryptographic Science and
- Technology
4 Email: vutacuong109@gmail.com
l Education: Received bachelor's

degree in 2011, master's degree in
2013, and PhD in 2016, in Radio Electronics, Kharkiv
Aerospace University, Ukraine.

Current research field: PKI Token, cryptographic
engineering.

68 No 2.CS (12) 2020

-

7

|

La Huu Phuc

Workplace: Institute of
Cryptographic Science and
Technology

Email: phucpvkt@hotmail.com

Education: Received bachelor's degree
in 1998, master’s degree in 2002, and

PhD in 2015 in Electronic engineering.

Current research field: Designing and producing security
device, specialized cipher machine.

