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Abstract. A secure threshold protocol for n players tolerating an ad-
versary structure A is feasible iff maxa∈A |a| < n

c
, where c = 2 or c = 3

depending on the adversary being eavesdropping (passive) or Byzantine
(active) respectively [1]. However, there are situations where the thresh-
old protocol Π for n players tolerating an adversary structure A may not
be feasible but by letting each player Pi to act for a number of similar
players, say wi, a new secure threshold protocol Π ′ tolerating A may be
devised. Note that the new protocol Π ′ has N =

∑n

i=1 wi players and
works with the same adversary structure A used in Π. The integer quan-
tities wi’s are called weights and we are interested in computing wi’s so
that
1. Π ′ tolerates A even if Π does not tolerate A.
2. N =

∑n

i=1 wi is minimum.
Since the best known secure threshold protocol over N players has a
communication complexity of O(mN2 lg |F|) bits [9], where m is the
number of multiplication gates in the arithmetic circuit, over the fi-
nite field F, that describes the functionality of the protocol, it is ev-
ident that the weights assigned to the players have a direct influence
on the complexity of the resulting secure weighted threshold protocol.
In this work, we focus on computing the optimum N . We show that
computing the optimum N is NP-Hard. Furthermore, we prove that the
above problem of computing the optimum N is inapproximable within

(1 − ε) ln
( |A|

c

)
+

ln

(( |A|
c

)(1−ε)
)

−1

N∗ (c − 1), for any ε > 0 (and hence in-
approximable within Ω(lg |A|)), unless NP ⊂ DTIME(nlog log n), where
N∗ is the optimum solution.

1 Motivating Example

Consider a set of five players P = {P1, P2, P3, P4, P5} involved in a secure
distributed protocol wanting to tolerate the (passive) adversary structure A
given by

A = {(1, 2, 3), (1, 2, 4), (1, 5), (2, 5), (3, 4)}
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From the results of [1], it is clear that A cannot be tolerated by any threshold
protocol. Nevertheless, the above adversary can be tolerated by a threshold-
type protocol among nine players where players P1, P2, P3, P4 and P5 act for
one, one, two, two and three players respectively. This is indeed so because the
corruption of any one set in the adversary structure leads to the corruption of
at the most four out of the nine players which is tolerable[1]. In this example,
n = 5, w1 = w2 = 1, w3 = w4 = 2, w5 = 3, c = 2, N =

∑n
i=1 wi = 9.

2 Basic Definitions and Model

2.1 Secure Multiparty Computation

Consider a fully connected synchronous network of n players (processors), P =
{P1, P2, . . . , Pn}, who do not trust each other. Nevertheless they want to com-
pute some agreed function of their inputs in a secure way. Security here means
maintaining correctness of the output while keeping the players’ inputs as pri-
vate as possible, even if some of the players are faulty. This task can be easily
accomplished if there exists a trusted third party. But assuming the existence
of such a trusted third party is quite unrealistic. The goal of secure multiparty
computation is to transform a given protocol involving a trusted third party into
a protocol without need for the trusted third party, by simulating the trusted
third party among the n players.

The players’ distrust in each other and in the underlying network is usually
modeled via an adversary that has control over some of the players and commu-
nication channels. Many different adversary models have been considered, each
modeling different problems, or addressing a different setting. These approaches
can be classified according to a number of criteria that are briefly discussed be-
low. Adversaries are classified according to their computational resources (limited
(cryptographic) or unli mited (information theoretic)), their control over commu-
nication (secure, insecure, or unauthenticated channels), their control over cor-
rupted players (eavesdropping (passive), fail-stop, or Byzantine (active)), their
mobility (static, adaptive, or mobile) and their corruption capacity (threshold or
non-threshold). In the information theoretic model one can distinguish between
protocols with small (unconditional) or zero (perfect) failure probability.

In the information theoretic setting, [1] gave a perfect protocol for the gen-
eral secure multiparty computation problem in the synchronous secure channels
model without broadcast and proved tight bounds on the number of corrupted
players that can be tolerated.

Theorem 1 ([1]). For every n ≥ 2, there exist Boolean functions f such that
there is no synchronous

⌈
n
2

⌉
-secure protocol for n players that computes f . For

every n ≥ 3, there exist functions f such that no synchronous protocol for n
players

⌈
n
3

⌉
-securely computes f , if Byzantine adversaries are allowed.
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2.2 The Adversary Model

In this section, we formally define the weighted threshold adversaries. We begin
with a brief look at the threshold adversaries.

Threshold Adversaries. A threshold adversary, A, is a probabilistic strategy,
that can corrupt up to t < n among the n players involved in the protocol. The
corruption may be either active or passive, by which we mean the following:

1. Passive Corruption: The adversary in this case behaves like an eavesdrop-
per; that is, the adversary can gather all the information present with the
corrupted players and can also perform any arbitrary computation on these
gathered data.

2. Active Corruption: The adversary here is also referred to as a Byzantine
adversary. They can do all what an eavesdropping adversary can and in
addition can also take complete control of the corrupted players and alter the
behaviour of the corrupted players in an arbitrary and coordinated fashion.

Tolerable Threshold Adversaries: It is known that all the passive thresh-
old adversaries such that t ≤ ⌊

n−1
2

⌋
can be tolerated. That is, it is possible

to construct multiparty computation protocols that are secure against such an
adversary. By a security against an adversary A, we mean, whatever A does in
the protocol, the same effect (on the output) could be achieved by an adversary
(may be different from A but similar to it in costs) in the ideal protocol (that
assumes the existence of a trusted third party to whom all the inputs can be
sent and outputs received). For more formal and “correct” definitions of security,
we refer the readers to [2,6,10]. Similarly, in the case of active adversaries, we
require that t ≤ ⌊

n−1
3

⌋
.

Generalized Adversaries. In contrast to the threshold adversaries, [7,8] intro-
duced a more general adversary characterized by a monotone adversary structure
which is a set of subsets of the player set, wherein the adversary may corrupt the
players of one set in the structure. An adversary structure is said to satisfy the
Q(c) property if no c sets in the adversary structure cover the full set of players.
It is proved that in the passive model, every function can be computed securely
with respect to a given adversary structure if and only if the adversary structure
satisfies the Q(2) property. Similarly, in the active model, a secure computation
of a function is possible if and only if the adversary structure satisfies the Q(3)

property.

Weighted Threshold Adversaries. The weighted threshold adversaries are
somewhere in between the threshold and the generalized adversaries. These ad-
versaries are characterized by adversary structures that possess the following
addition property so that they are tolerable: for each player Pi, 1 ≤ i ≤ n, there
exists a non-negative weight wi, such that the adversary structure is tolerated in
a threshold-type protocol with N =

∑
i:Pi∈P wi players. Hereafter in the sequel,
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unless explicitly specified, we will use the term adversary structure to mean the
maximal basis1.

In the weighted threshold adversary setting, one of the ways to improve the
complexity of the resulting secure protocol is to assign weights to each of the
players so that the adversary can be tolerated with the sum of the weights kept
at a minimum, since, a larger sum of weights calls for larger number of secret
shares (essentially of the same size) and hence an increase in the computation
and communication complexities.

3 The Optimal Player Weights Problem

In this section, we define the problem of assigning optimum weights to the players
in a secure multiparty protocol tolerating weighted threshold adversaries.

Definition 1 (Optimum Assignment of Player Weights(OAPW)). Given
the player set P = {P1, P2, . . . , Pn}, the adversary structure A ⊂ 2P , and a
constant c,2 a valid assignment of player weights (if it exists) is a function

f : P → Z+ ∪ {0} such that for all sets z ∈ A, ∑
Pi∈z f(Pi) <

∑
∀Pi∈P f(Pi)

c . A
valid assignment of player weights, f , is said to be an optimum assignment of
player weights if there does not exist any valid assignment of player weights, f ′,
such that

∑
∀Pi∈P f

′(Pi) <
∑

∀Pi∈P f(Pi).

Definition 2 (Decision Version of the OAPW problem).

Instance: A finite set P, a collection A of subsets of P, a constant c, and a
positive integer k.
Question: Does there exist a valid assignment of player weights f : P → Z+ ∪
{0} such that ∑

∀Pi∈P f(Pi) > ck and for all sets z ∈ A,
∑

Pi∈z f(Pi) ≤ k?
From the (referDefinition 2) constraint that for all sets z∈A,∑∀Pi∈z f(Pi)≤k,

it is obvious that we can restrict the range of the function f to {0, ..., k}. We
denote an instance to the OAPW problem by the ordered list < P,A, c, k, r >,
where f : P → {0, ..., r}, and the size of the solution to the above instance is
ck + 1.

4 Hardness of the OAPW Problem

Definition 3 (Density Index Number of a Graph G). : Given a simple
undirected graph G = (V,E), the c-Density Index Number of G is defined as

c-DIN(G) = min

{
ck+1

∣∣∣∣ there exists V ′ ⊆ V, |V ′| = ck+1 such that there does not
exist a vertex u ∈ V adjacent to ≥ k+1 vertices in V ′.

}

1 Given the adversary structure A, the maximal basis Abasis = {z∈A| � ∃z′⊃z, z′∈A}.
2 Note that c = 2 if the adversary is passive and c = 3 if the adversary is active.
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Theorem 2. Given a simple undirected graph G = (V,E), the size of the min-
imum dominating set (mds) of G is equal to 1-din(Gc), where Gc is the com-
plement of G.

Proof: Let 1-din(Gc) = k+1 and V ′ ⊆ V be the subset satisfying the property
as defined in Definition 3 with |V ′| = k+1. From definition of 1-din we see that
every vertex in V (and hence in V − V ′) in Gc is not adjacent to at least one
vertex in V ′. This implies that in G, every vertex in V −V ′ is adjacent to at least
one vertex in V ′. Hence, V ′ is a dominating set of G. If V ′ is not the minimum
dominating set, then let U be the minimum dominating set of G. Then, |U | ≤ k
and any vertex u ∈ V − U is adjacent to at least one vertex in U . Therefore in
Gc, any vertex u ∈ V −U is not adjacent to all the vertices in U . Also, since no
vertex in U can be adjacent to all the vertices in U (due to the fact that a vertex
cannot be adjacent to itself), the 1-DIN(Gc)=k which is a contradiction. Thus,
the minimum constraint in the definition of 1-din implies that V ′ is indeed a
mds of G.

The fact that computing the size of a mds of a graph is NP -complete [5] and
Theorem 2 imply the following theorem.

Theorem 3. Given a simple undirected graph G = (V,E), computing 1-din(g)
is NP -complete.

Theorem 4. c-DIN(G) for any fixed constant c, where G = (V,E) is a simple
undirected graph, is NP-Hard.

Proof: We reduce the problem 1-DIN(G) to the problem c-DIN(G). Given an
instance of the problem 1-DIN(G), construct G′ = (V ′, E′) containing c copies
of G = (V,E); V ′ = V1∪· · ·∪Vc such that i ∈ Vj is relabelled < i, j >. Similarly,
E′ containing c copies of E; E′ = E1∪· · ·∪Ec such that for every pair of vertices
(i, k) ∈ Ej , is relabelled (< i, j >,< k, j >). Solve the c-DIN problem on G′.
By the Pigeonhole principle we see that, there exists a solution to c−DIN(G′)
if and only if there exists a solution to the problem 1−DIN(G).
Theorem 5. Problem OAPW is NP-Hard.

Proof: Given a simple undirected graph G = (V,E), we suggest the following
method for computing c-DIN(G). Without loss of generality let us assume that
the vertices of G are numbered { 1, . . . , n }, |V | = n. Let the set P = V . Con-
struct the set A = {V1, . . . , Vn}, such that, Vi is a set containing all vertices adja-
cent to vertex i in G. Solve the problem OAPW with the sets P and A as defined
above. We now show that the function f does not exist for ck+1 < c-DIN(G)−c.
Let us assume that f exists and let V ′ ⊆ P be the set of vertices that are as-
signed non-zero values by f .

Case 1: (|V ′| ≤ k+ 1). From Definition 3 (of c-DIN), there exist an a ∈ A such
that V ′ ⊆ a. This implies that ∑

i∈a f(i) > k, a contradiction.
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Case 2: (|V ′| > k+1). Consider a V ” ⊆ V ′, |V ”| = k+1. From Definition 3 (of
c-DIN), there exist an a ∈ A such that V ′′ ⊆ a. This implies that ∑

i∈a f(i) > k,
a contradiction.

For ck + 1 = c-DIN(G)−c, consider any V ′ ⊆ P , |V ′| = ck + 1. Assign
f(i) ← 1, ∀i ∈ V ′ and f(i) ← 0, ∀i /∈ V ′. It is easy to see that f is a solution
to the OAPW problem. The same concept can be extended to show that for
ck+1 > c-DIN(G)−c there exist a function f satisfying the constraints specified
by the OAPW problem. Hence, given an algorithm for the OAPW problem that
takes O(g(n)) time, one can compute the c-DIN of a simple undirected graph G
in O(g(n) log n) time. Since c-DIN(G) ≤ n it is enough to consider ck + 1 ≤ n.
The above discussion and Theorem 4 imply the proof of this theorem.

5 An Approximate Algorithm for the OAPW Problem

In this section, we first reduce the OAPW (P,A, c, k, k) to OAPW (P,A, c, k, 1).
We then provide an (exponential) algorithm to solve the OAPW (P,A, c, k, 1)
exactly followed by a (polynomial) approximate algorithm for the same. Finally,
we design an approximate algorithm for OAPW (P,A, c, k, k) and analyse its
performance.

Theorem 6. A solution to OAPW in which f : P → {0, 1} implies a solution
to OAPW in which f : P → {0, ..., k}.
Proof: Given an instance I = (P,A, c, k, k) of OAPW, construct an instance
I ′ = (P ′,A, c, k, 1) in which P ′ is k copies3 of P. Solving OAPW on I ′, each
Pi ∈ P would have been assigned at most k 1s (at most once in each copy of P).
Computing f(i) to be the number of 1s assigned to Pi in P ′, gives a solution for
the OAPW on I.

5.1 Solving OAPW (P, A, c, k, 1)

Exact Solution Given the instance I = (P,A, c, k, 1) of the OAPW problem,
construct a bipartite graph G = (X,Y,Eg) with X = P, Y = A. Add (x, y) to
Eg if and only if x ∈ X, y ∈ Y , and x ∈ y (that is, the player x is present in
the set y). Now, the problem of OAPW (P,A, c, k, 1) stated graph theoretically
is to find ck + 1 vertices in X such that the degree of each vertex y ∈ Y in the
subgraph induced by these ck + 1 vertices union Y on G is ≤ k.

Consider the bipartite graph H = (X,Y,Eh) where Eh = {(x, y)|x ∈ X, y ∈
Y, (x, y) �∈ Eg}. The OAPW (P,A, c, k, 1) problem can now be rephrased as to
find ck + 1 vertices in X such that the degree of each vertex y ∈ Y in the
subgraph induced by these ck+1 vertices union Y on H is at least (c− 1)k+1.

From the bipartite graph H = (X,Y,Eh), we construct the following instance
of a set multi-cover problem that solves the OAPW (P,A, c, k, 1) problem: Let
3 Since the search space of k is bounded by a polynomial in (|P| + |A|), the given
construction is feasible.
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Algorithm for OAPW (P, A, c, k, 1)

1. Given the instance Ioapw = (P, A, c, k, 1) of the OAPW problem, construct the
instance Ismc = (U, F , (c − 1)k + 1, ck + 1) of the set multi-cover problem as
illustrated in Subsection 5.1.

2. Solve the instance Ismc using the approximate set multi-cover algorithm of [3],
which is a natural extension to the greedy approximate algorithm for the set cover
problem.

3. The solution to the instance Ismc (if it exists) gives rise to the set of vertices in
X (i.e. the set of players in P) that are to be given the weight 1. The rest of the
players are given the weight 0.

4. If the instance Ismc has no solution then the instance Ioapw has no solution as well.

Fig. 1. The Approximate Algorithm for OAPW (P, A, c, k, 1)

the set U = Y and the family of subsets of U be F = {Xi|i = 1, 2, . . . , |X|},
where Xi denotes the set of all elements in Y that are adjacent to the ith element
in X in the bipartite graph H. The decision version of the OAPW (P,A, c, k, 1)
problem now reads as follows: Does there exist ck+1 or less number of sets from
F such that their union covers each element of U at least (c− 1)k + 1 times?

The above problem can be solved using the solution to the set multi-cover
problem which is as follows.

Definition 4 (Set Multi-Cover Problem).
Instance: A set U , a family F of set of subsets of U , positive integers m and
k.
Question: Does there exist ≤ k sets from F such that they together cover each
element of U at least m times?

Thus, based on the (exponential) algorithm of finding the minimum set multi-
cover, we now have an (exponential) algorithm to solve the OAPW (P,A, c, k, 1)
problem.

Approximating OAPW (P,A, c, k, 1). We proceed by “replacing” the expo-
nential algorithm of finding the minimum set multi-cover by its corresponding
approximate greedy algorithm as proposed by [3]. Thus, the resulting approxi-
mate algorithm for OAPW (P,A, c, k, 1) is as given in Fig. 1.
Theorem 7. The algorithm presented in Fig. 1 runs in time polynomial in the
size of the input and correctly solves the OAPW (P,A, c, k, 1) problem.
Proof: Since each of the four steps in the algorithm runs in time polynomial in
(|P| + |A|), it is evident that the overall algorithm runs in time polynomial in
the input size.

From the construction of Subsection 5.1, it is clear that a solution to the
instance Ioapw exists if and only if the instance Ismc has a solution. We now



Toward Optimal Player Weights in Secure Distributed Protocols 239

show that every solution to the instance Ismc leads to a solution to the instance
Ioapw, thereby proving the theorem.

Let (Xi1 , Xi2 , . . . , Xick+1), Xj ∈ F be a set multi-cover of U such that their
union covers U at least (c − 1)k + 1 times. We stress that the value of k here
may be much larger than what the minimum set multi-cover requires it to be.
From this (approximate) set multi-cover, we obtain the corresponding vertices
in X that along with the vertices in Y induce a subgraph Hsub on H such that
each vertex in Y in Hsub has a degree of at least (c − 1)k + 1. Therefore, since
Eh and Eg compliment each other, there exist ck+1 vertices in X such that the
degree of every vertex in Y is bounded by ≤ k in the subgraph Gsub induced
by the ck + 1 vertices of X along with Y on G: thus providing a solution to the
instance Ioapw.

Corollary 1. The approximate algorithm for OAPW (P,A, c, k, k) (see Fig. 2)
follows from the Theorems 6 and 7.

6 Inapproximability Results
regarding the OAPW Problem

We begin with the known inapproximablity result of the set cover problem.

Theorem 8 ([4]). The minimum set cover problem with the instance (U,F) is
inapproximable within (1−ε) ln |U | for any ε > 0, unless NP⊂DTIME(nlog log n).

Using the above result, we show that the OAPW (P,A, c, k, k) problem is inap-
proximable within Ω(lg |A|) unless NP ⊂ DTIME(nlog log n).

Theorem 9. The problem of computing the optimum player weights is inap-

proximable within (1− ε) ln
(

|A|
c

)
+

ln
(( |A|

c

)(1−ε)
)

−1

N∗ (c− 1), for any ε > 0 (and
hence inapproximable within Ω(lg |A|)), unless NP ⊂ DTIME(nlog log n), where
N∗ denotes the sum of the optimum player weights, and c = 2 for eavesdropping
adversary and c = 3 if the adversary is Byzantine.

Algorithm for OAPW (P, A, c, k, k)

1. Given the instance Ik = (P, A, c, k, k) of the OAPW problem, construct the in-
stance I1 = (P(k), A, c, k, 1) of the OAPW problem as illustrated in the proof of
Theorem 6.

2. Solve the instance I1 using the approximate algorithm given in Fig. 1.

Fig. 2. The Approximate Algorithm for OAPW (P, A, c, k, k)
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Proof: Given a set U and a set F containing subsets of U , the Set Cover problem
is to find the minimum number of sets of F that covers U . We show that the
Set Cover problem could be solved using an algorithm for the OAPW problem.
Given U and F , construct the instance OAPW (P,A, c, k, k) as follows:
1. Construct a bipartite graph H = (X,Y,E) such that X = F and Y = U
and (x, y) ∈ E if and only if x ∈ X, y ∈ Y and y �∈ x.

2. Let U = {u1, u2, . . . u|U|}. Construct the set A′ of |U| elements, such that
the ith element of A′, is the set of elements in X that are adjacent to ui in
H. Let P ′ = X.

3. Let P be c copies of P ′ and A be c copies of A′.

From the Theorems 2 and 4, it is straightforward to observe that a solution to
the instance OAPW (P,A, c, k, k) gives a set cover of size k+1, and we minimize
k to get the Minimum Set Cover.

Let N∗ = ck∗+1 be the size of the optimal solution to OAPW (P,A, c, k∗, k∗)
and let N = ck + 1 be the size of the solution yielded by our algorithm. This
implies that the minimum set cover is of size k∗ + 1 and the solution got by
application of our algorithm is a set cover of size k + 1.

From Theorem 8 we see that,

k + 1 > (k∗ + 1)R,

where R = (1− ε) ln |A|
c .

Note that |U| = |A|
c . Therefore we get,

N − 1 + c
c

>
N∗ − 1 + c

c
R,

and thus,
N

N∗ > R+
(R− 1)(c− 1)

N∗

Hence the proof.

7 Conclusion

The bottleneck in secure distributed protocols is, in general, the communica-
tion/round complexity rather than the computation complexity. In the weighted
threshold adversary setting, the communication complexity of the (resulting)
protocol can be improved by two (independent) methods, viz., optimizing the
players’ weights, and developing/adapting the techniques of the threshold setting
to the weighted threshold setting. In this work, we studied the former method
and examined its complexity. We also presented an approximation algorithm for
the Optimal Assignment of Player Weights (OAPW ) problem and proved an
inapproximability bound using the well-known set cover problem. Analyzing the
quality of approximation is left open and is attempted in the full version of this
paper.
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