RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Capitalizing on Collective Intelligence

Virtualization and Cloud: Orchestration, Automation, and Security Gaps

SESSION ID: CSV-R02

Dave Shackleford

Founder & Principal Consultant Voodoo Security @daveshackleford

Introduction

- Private cloud implementations incorporate a lot of "moving parts"
- With growth and maturity of a cloud infrastructure, most incorporate orchestration and automation functions
- These are rarely secured
 - Few vendor-integrated options
 - Little operational attention to risk and security
- Let's delve into potential risks and what we can do about them.

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Architecture and Definitions

Orchestration

- The orchestration "layer" allows for planned automation and provisioning tasks within a cloud environment
- Typically managed by a distinct software platform
 - Can be open-source or commercial
- Often relies heavily on APIs
- Often focused on configuration, changes and change management, and provisioning
- Can also play a role in monitoring, security, and other functions

Private Cloud Architecture

#RSAC

Reference: http://inthepassing.files.wordpress.com/2010/01/cloud-ref-arch.jpg

Private Cloud Architecture: Single Point of Failure?

Reference: http://inthepassing.files.wordpress.com/2010/01/cloud-ref-arch.jpg

#RSAC

Another Orchestration Model Example

What about automation?

- Orchestration relies heavily on automation tools and "rules"
- Automation tools can easily manage a number of common cloud "activities"
- If **misused**, however, automation could easily lead to chaos
 - Malicious commands
 - Service disruption
 - File/system/app modification

Automation Frameworks and Tools

- LOTS of tools emerging and available, both open and commercial
 - IBM Rational
 - Cisco Intelligent Automation for Cloud (CIAC)
 - Dell Cloud Manager
 - Puppet (Puppet Labs)
 - OpsCode Chef
 - CFEngine
- OASIS also defined Topology and Orchestration Specification for Cloud Applications (TOSCA)
 - XML-based language defined for service/template provisioning

RSACONFER

More on Puppet and Chef

Puppet Labs' Puppet Appet

- Centrally-defined resources are provisioned to systems and monitored
- Configuration management for OS, network, middleware, and application tiers is possible
- Integrates natively with AWS, VMware, OpenStack, etc.

Opscode Chef

- 3-tier architecture:
 - Nodes
 - Chef Server
 - Workstations
- Leverages Ruby "recipes" that are loaded to configuration "cookbooks"

Common Orchestration Tasks

- Configuration Management
 - Storage
 - VM/Compute
 - Network
- Provisioning
 - VMs and application instances
- IT Automation and DevOps
- Security & Compliance assessment, monitoring, and reporting

RSACO

An Example Use Case

1. Orchestration Engineer defines a resource and commits to the repository

Source: http://docs.opscode.com/chef_overview.html

An Example Use Case

2. Automation Tools write the new resource definition to the main server, where it's added to a defined workflow and policy

> 1. Orchestration Engineer defines a resource and commits to the repository

Source: http://docs.opscode.com/chef_overview.html

An Example Use Case

2. Automation Tools write the new resource definition to the main server, where it's added to a defined workflow and policy

> 1. Orchestration Engineer defines a resource and commits to the repository

3. Nodes pull the new resource config, making configuration and local policy changes as needed

RSACONFERENCE2

Source: http://docs.opscode.com/chef_overview.html

Another Example Use Case

A					X
C (C) (C) International (C)	- O Certific G E PLAT	VS + Service Management	Service Management	×	0 * 0
Service Management Portal	l v				i i i i i i i i i i i i i i i i i i i
ALL ITEMS	all items				
	NAME	DPE	STATUS	SUBSCRIPTION	R
AND NETWORKS	Demoil ID	→ Virtual Matrice	🗸 Barring	VIM FRAM	
NEW					۲
	4 aurex	CREATE	UBSCRIPTION VM Plan(50d5b32c-a9ba-4b	fd-9607-901c79331-	
<++> NETWORKS	CUSTO	M CREATE	IRTUAL MACHINE NAME		
j≡ PAN			TechRepublic_VM		
		π	emplate		
			2008_R2	×	
			ASSWORD FOR ACCOUNT 'ADMIR	ISTRATOR	
			DNFIRM PASSWORD		
			CREATE A VIR		

1. Developer navigates to internal self-service portal and requests a new virtual machine resource

RSACONFEREN

Another Example Use Case

1. Developer navigates to internal self-service portal and requests a new virtual machine resource

RSACONFERENCE2014

2. Request is sent to orchestration platform. Resource definition is verified, as is requester role and permissions.

16

3a. A new VM is created.

Another Example Use Case

1. Developer navigates to internal self-service portal and requests a new virtual machine resource

2. Request is sent to orchestration platform. Resource definition is verified, as is requester role and permissions.

3b. FW rules are opened.

EMC²

VPLEX

RSACONFERENCE2014

A final example use case...

A final example use case...

The Orchestration platform becomes self aware...

#RSAC

RSACONFERENCE2014

A final example use case...

The Orchestration platform becomes self aware...

#RSAC

RSACONFERENCE2014

Orchestration Tools

Commercial:

- CSC ServiceMesh Agility
- Flexiant
- IBM SmartCloud
- HP Operations Orchestration
- VMware vCenter Orchestrator
- Oracle Nimbula

- Open-Source:
 - Abiquo
 - CloudStack
 - Eucalyptus
 - OpenStack
 - Puppet / Chef

Orchestration and Automation Risks

- Control of and interaction with automation platforms can be very risky
 - Poor development, scripting, resource design and instantiation
 - System availability issues or resource hijack/compromise
 - Malicious insiders or lack of "least privilege"
 - Vendor lock-in (architecture, language, etc.)
 - Poor authentication/credential management
 - Weak or non-existent integration with security products
 - Configuration management and access control are critical

Key Risk 1: Modification of Critical Files

- All orchestration platforms have critical configuration files and/or files that include sensitive data
- Examples:
 - Puppet: /etc/puppetlabs/installer/database_info.install
 - Chef: knife.rb or JSON Data Bag files
 - Flexiant: /etc/extility/local.cfg
- Modifying these files could grant illicit access, change provisioning parameters, modify database or other users, etc.

Examples of critical platform files

root@learn installer]# less database_info.install _backup_and_purge_old_database_directory=n _database_host=localhost _database_port=5432 g_database_root_user=pe-postgres _pe_database=y [_puppet_enterpriseconsole_auth_database_name=console_auth q_puppet_enterpriseconsole_auth_database_password=astrongpassword _puppet_enterpriseconsole_auth_database_user=console_auth g_puppet_enterpriseconsole_database_name=console __puppet_enterpriseconsole_database_password=anotherstrongpassword q_puppet_enterpriseconsole_database_user=console puppetdb_database_name=pe-puppetdb _puppetdb_database_password=onemorestrongpass q_puppetdb_database_user=pe-puppetdb

Puppet: /etc/puppetlabs/installer/database_info.install

CEPH support - set to 1 to support CEPH CEPH=0 INITIAL_ADMIN_USER = dshackleford@voodoosec.com INITIAL_ADMIN_PASSWORD = CLEARTEXT XVPADMIN_ADMIN_PASSWORD = CLEARTEXT HYPERVISOR = KVM LICENCE_USER=85d081ea-6125-4825-899f-e292173 LICENCE_PASSWORD=1fef8b6b-0430-4eb3-8e0d-505fc SSH_PUBLIC_KEY = ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDCCE4wuuge0wSEzkSFooxUyOR VkrjfN3X82jXJw0etUSSIHUk0mXEUXJVjh3UexBhitt6C8AKFdF0YaG9sbgmV/Aa07FP5Tz21fJk3qi2 cvC0Uc3fHoHA19IX+1XFrS2FbtzLIr17F58MIuv7pNqDctC/iiM0K3u2LcoKX95yngYs4CXc1X8VS464 90wDdnE+FSHx018A32RFLXLpTwqXMLqnQB9q8P9zjP2CiJXUKPS2QM8xs0a86Dgi1Rcc1PWdVBm3Fa4/ AnpiSKsaJ29EqSnjuPe60KbY1rju5K146Yzc0T+yt8ukeCrDJIA72mNrUceNNLQRjbGsp+a0KHCYX ex tility

Flexiant: /etc/extility/local.cfg

RSACONFERENCE2014

Critical platform files...on the Internet

Google query: chef data_bags filetype:json password -metadata

Key Risk 2: Modification to Work Flows

- Orchestration platforms all function with defined "runbooks"
 - These include resource definitions, configuration options, scheduling and policy preferences, credentials/roles, and more
- Most work flow steps involve:
 - Integration with a cloud management platform (OpenStack, vSphere)
 - API calls to network devices, applications, or middleware
 - Pre-authenticated remote command execution
- Changing any of these could dramatically impact nodes or resources

Example of workflow modification:

- A workflow is defined that:
 - Provisions a new application VM
 - Opens numerous Check Point firewall rules to facilitate traffic to/from the new VM
 - Performs periodic health/security checks of the VM and app configuration
- An attacker is able to modify the workflow definition:
 - Adds malicious files to the VM configuration
 - Opens a new firewall port for data exfiltration and C2
 - ...for ALL NEW INSTANCES.

27

Key Risk 3: Changes to Roles and Privileges

- Access to orchestration platforms needs to be carefully controlled
- In addition, defined roles and privileges should be designed and implemented with extreme caution
 - Too many privileges could easily allow insider attacks to proliferate
- Example: Puppet Console system has a simple Web username/password field combination, and is exposed to the entire management network
 - Brute force password guessing...and no lockout.
- Example 2: A business unit IT operator role is set up improperly to allow unfettered API access to network nodes and all hypervisor instances
 - The user accidentally crashes hypervisors with API calls...or worse.

RSACONFE

Key Risk 4: Availability Sabotage

- Availability of cloud nodes, middleware, applications, and even network devices could be severely impacted if:
 - API access is changed or corrupted
 - Credentials are compromised/changed/deleted
 - Shutdown commands are issued
 - Network access paths are changed/degraded
- The orchestration platform itself is a single point of failure
 - Many implementations I have seen have ZERO redundancy

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Attacking Orchestration

- In a cloud environment, the orchestration layer is a potential weak point with much to gain for attackers
- An attacker or malicious insider that gains control over orchestration could:
 - Modify the SAN allocation for VMs
 - Modify VM templates
 - Modify user/group roles
 - Impact availability of orchestration++
- These are just starting points!

RSA(

Threat Model 1: SAN Allocation

- Most cloud implementations rely heavily on large-scale storage infrastructure
- Orchestration workflows incorporate automated disk provisioning for workloads
- Modification of the storage workflow parameters for disk allocation could easily lead to a SAN becoming full or over allocated
- Deliberate or accidental configuration changes could easily lead to this threat becoming realized
- Impact: Availability and/or loss/corruption of data

Threat Model 2: VM Template Modification

- A very common use case for orchestration is deployment of new VM workloads from templates
- Templates may exist on the SAN and hypervisor platforms
 - Orchestration resource templates will modify as needed
- Modification could:
 - Add malicious programs into a template
 - Open new ports / start new services
 - Disable security features or programs

Threat Model 3: Role Modification

- Modifying orchestration roles could easily lead to:
 - Undetected backdoor/privileged access by "low privilege" users
 - Accidental configuration changes/mishaps
 - Escalation of privilege scenarios
 - "Shadow IT" or other changes
- Role definition and privileged user monitoring is critical
- Many orchestration platforms don't natively integrate with Identity Management systems

CERT's Cloud Insider Guide

- CERT breaks down the insiders and risks in a 2012 paper
- Lists roles and likely attack vectors
- Where's the Orchestration Admin?

Hosting Company Administrators

- Update virtual machine drivers to compromise the hosted images
- Add instrumentation to the hosting software to monitor internal processes, memory calls, disks, etc.
- Network taps they can perform man-in-the-middle attacks on all of their hosted systems, and do so completely transparently

Virtual Image Administrators

- Create alternate images that do not conform to the baseline, but report that they do.
- Copy virtual machines or disks
- Modify individual instances of a virtual machine in a cloud so that only some of the cloud behaves the wrong way.

System Administrators

- Traditional OS attacks root compromises, Trojans, logic bombs, etc.
- Update virtual machine drivers to vulnerable instances

Application Administrators

• Virtual Machine aware attacks [Rutkowska 2006] that target known vulnerabilities in the VM drivers to gain control of the hosting platform.

RSACONFERENCE2014

- Malicious application configurations
- Copy all application data.

Full paper available at www.cert.org/archive/pdf/CERT_cloud_insiders.pdf

Threat Model 4: Availability Impact

- Any modification to the orchestration platform itself, or various settings, could have major availability impact:
 - Locking out admin accounts
 - Changing resource definitions
 - Modifying workflow steps or parameters
 - Changing/closing local ports for communication
 - Starting/stopping orchestration services
- The orchestration platform could be a single point of failure, too.

Orchestration Attack Tree

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Remediation Options and Tools

Key Areas Of Focus

- Orchestration Platforms
 - Often multi-tiered
 - Focus on code/data repos, master servers, and client configs
- Databases
 - Usernames and passwords, config files containing sensitive data
- Automation platforms
 - Separate repos or "workstations" (Chef) used for configuration and resource management

Key Areas Of Focus

Operations teams

- Social engineering attacks targeting orchestration and automation teams more focus on security awareness
- API calls and logging
 - Local access and calls of APIs
 - Remote API logging at nodes and infrastructure
- "Failsafes" affected platforms and systems
 - "Deny All" stance and "triggers"/"tipping point" fallbacks

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

A Checklist for Security Teams

- Review security options available within orchestration platforms
 - Most offer role-based access
 - Privilege creation and assignment is often limited, though
 - Key- and cert-based authentication
 - Look for integration with Privileged User Management and IAM tools
 - Assess depth and breadth of API integration
 - Look for logging and event generation

- Review security options available within orchestration platforms
- Evaluate whether file integrity monitoring tools can run on the orchestration management platforms
 - Many attacks are focused on modification of critical files or configuration parameters
 - FIM is likely "unsupported", especially with "appliance" form factors

- Review security options available within orchestration platforms
- Evaluate whether file integrity monitoring tools can run on the orchestration management platforms
- Consider dual-factor authentication to the orchestration servers, if possible
 - May help to mitigate attack vectors coming from compromised Ops workstations
 - Can also require access from a "jump box" for control and audit

- Review security options available within orchestration platforms
- Evaluate whether file integrity monitoring tools can run on the orchestration management platforms
- Consider dual-factor authentication to the orchestration servers, if possible
- Integrate orchestration logs and events into your monitoring/SIEM strategy
 - Develop behavioral profiles for admin-level tasks and operations

- Review security options available within orchestration platforms
- Evaluate whether file integrity monitoring tools can run on the orchestration management platforms
- Consider dual-factor authentication to the orchestration servers, if possible
- Integrate orchestration logs and events into your monitoring/SIEM strategy
- Heighten security awareness for Orchestration teams!

Conclusion

- Orchestration and automation platforms have the potential to streamline cloud operations
 - Properly implemented, can improve effectiveness & efficiency
- Many orchestration platforms are lacking in security, however
- Many security teams also aren't aware of the risks these systems pose!
 - Perform a security/risk assessment of orchestration platforms and governance/usage of them
 - If well-managed, these systems can improve security, too!

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

