

Good Fences Make Good Neighbors: Rethinking Your Cloud Selection Strategy

SESSION ID: CSV-W01

Bryan D. Payne

Director of Security Research Nebula @bdpsecurity

Cloud Security Today

- Cloud has lots of momentum
- Lots of concerns about security
- What's the real story?

What this talk will cover

- What does it take to secure an laaS cloud?
- Specific ideas to improve your cloud or select a cloud provider.

What this talk will **NOT** cover

- A cloud comparison
- A one-size-fits-all cloud security cookbook

Talk Outline

- Cloud Introduction (demo!)
- IaaS Architecture Details
- Security Differentiators
- Virtualization Stack Security (demo!)
- Questions & Wrap-up

Cloud Service Models

Cloud Clients

Web browser, mobile app, thin client, terminal emulator, ...

Application

Platform

Infrastructure SaaS

CRM, Email, virtual desktop, communication, games, ...

PaaS

Execution runtime, database, web server, development tools, ...

laaS

Virtual machines, servers, storage, load balancers, network, ...

Today's Talk

Public Cloud

- Users: Anyone with a credit card
- Provider
 - Doesn't trust users
 - Doesn't want to violate users privacy

- Monitoring at network edges
- Fraud prevention
- Network reputation concerns
- Broad compliance concerns

Private Cloud

- Users: Part of a common organization
- Provider
 - Trusts users (at some level)
 - Has full access to data / workloads

- Security from top to bottom
- Design undergoes great scrutiny
- Enterprise integration
- Targeted compliance concerns

Know Your Neighbors

- Who are your neighbors (other users)?
- Who is your cloud admin / operator / builder?
- Who else has privilege on the cloud?
 - Who should?
 - Who does?

Demo: How Things Can Go Very Wrong

Understanding laaS Cloud Architectures

User Perspective

- Launch instances
- Take snapshots
- Flexible storage options
- API + web dashboard

Admin / Operator Perspective

- Create & manage users, projects, quotas, etc
- Configure cloud
- Monitor cloud events, logs, health, etc
- API + web dashboard

Builder Perspective

- Software engineer & DevOps
- Designs and creates cloud
- Controls security domains
- Many services to setup & manage

```
rt exception as db_exc
instance_type_opts = [
    cfg.StrOpt('default_instance_type',
               default-'st.usall',
               help-'default instance type to use, testing only'),
COMP = cfg.COMP
CONF.register_opts(instance_type_opts)
LOG = logging.getLogger(__name__)
INVALID_NAME_REGEX = re.compile("["\w\.\- |")
def _int_or_none(val):
     f val is not None:
         return int(val)
system_metadata_instance_type_props = {
     'id': int.
     'name's str.
     'memory_mb': Int.
     'vcous's int.
     'root_gh's int,
    'ephemeral_gb's int,
    'flavorid's atr.
    'swee's fet,
    'rxtx_fector': flost,
    'vcpu_weight': _int_or_none,
def create(name, memory, vcpus, root_gb, ephemeral_gb-Nome, flavorid-Nome,
           suspetions, rate factor-tions, is public-true):
    ""Creates instance types."""
    if flavorid is None or flavorid -- "':
        flavorid = uuid.uuid4()
```


Cloud Simplicity

Example services from OpenStack.

Individual Services

Network

Security Domains

Gated Interconnects

Map Data Paths

Secure design complete...

...or is it?

Individual Services

Network

Lots of Glue

Data Paths

Message Plumbing

Billing Plumbing

Alarm Plumbing

SSL / TLS Plumbing

Under Cloud Admin Plumbing

So Much Plumbing!

OpenStack Security Guide

- http://doc.openstack.org/sec/
- Security guidance on deploying OpenStack (laaS Cloud)
- Written in one week
- Diverse group of authors
- Continued contributions accepted through GitHub

Cloud Security Domains

Example API Action: Launching an Instance

Security Challenges in the Cloud

- Audit trails
- Controlling access
- Defense in depth / Layered security
- Protecting bridge points
 - API Endpoints
 - Virtualization Security

Source: http://xkcd.com/908/

Cloud Security Differentiators

Security Certifications

- Necessary, but not sufficient
- Mapping to cloud not always clear
- Not a useful place to differentiate

Threats

Cloud Attack Vectors

Mitigation Strategies

API Endpoints

Service hardening, mandatory access controls, code audits

Web Dashboard

HTTPS, HSTS, CSP, allowed referrers, disable HTTP trace SSL/TLS, disable memory dedup, random assignments

Information Leakage

Unsecured Instances

Service hardening, mandatory access controls, code audits

VM Breakout

Sharina Avoid bare metal instances / device pass-through

Hardware Sharing
Default Images

Secure and maintain default images

User and/or tenant level network isolation for instances

Secondary Attacks

Least privilege, mandatory access controls, strong auth

Major Security Considerations

- High level architecture has different security domains
- End to end protection of network traffic
- Protected virtualization stack
- Protected API endpoints
- Ability to update easily
- Physical security at the datacenter

Case Study: TLS in the Cloud

Case Study: API Endpoint Protection

Securing the Virtualization Stack

What Is The Security Concern?

- Hypervisors have vulnerabilities
- A VM-breakout is among the worst exploits for cloud

Breakdown of Hypervisor Vulnerabilities

Trigger Source	Xen	KVM
Network	11 (18.6%)	2 (5.3%)
Guest VM User-Space	23 (39.0%)	13 (34.2%)
Guest VM Kernel-Space	19 (32.2%)	12 (31.6%)
Dom0/Host OS	6 (10.2%)	11 (28.9%)
Hypervisor	0 (0.0%)	0 (0.0%)
Total	59	38

From Perez-Botero et al, Characterizing Hypervisor Vulnerabilities in Cloud Computing Servers, In *Proceedings of* the Workshop on Security in Cloud Computing (SCC), May 2013.

Other Virtualization Considerations

- Bad actors on the control plane
- Hardware emulation, entropy considerations for VM
- Side channel cache attacks

Mitigation Strategies

- Mandatory access controls (KVM+SVirt & Xen+XSM)
- Minimize & harden QEMU software stack
- Runtime monitoring
- Security updates

Demo: Layered Security Mitigates Attacks

Time For Action

Your Next Steps

Bryan D. Payne

http://www.bryanpayne.org

