
SESSION ID:

‘2nd-Wave’ Advanced Threats: Preparing for
Tomorrow’s Sophisticated Attacks

ANF-W01

Nikos Triandopoulos
Principal Research Scientist

RSA Laboratories
RSA, The Security Division of EMC

#RSAC

Advanced Threats: Enterprises’ toughest enemy

 Advanced Threats (ATs) are a serious risk facing enterprises today
 comprise well-targeted, persistent attacks

 aim at unauthorized data manipulation or exfiltration

 employ rich attack vectors and unknown strategies

 social engineering
 zero-day malwares / vulnerabilities
 low-and-slow progression

Extremely hard-to-defend, often even hard-to-detect

2

#RSAC

The “canonical” attack cycle

Best defenses in security industry

 Tighter preventative practices
 raise the protection fence

 e.g., multi-factor authentication, data
protections, access control, etc.

 Detection & forensics tools
 visibility – analysis – action

 e.g., security information event
management (SIEM) systems,
security analytics

3

Initial
Compromise

Command
& Control

Lateral
Movement

Data
Exfiltration

initial
compromise

foothold
setup

privilege
escalation

presence
maintenance

internal
reconnaissance

lateral
movement

mission
completion

AT
life cycle

#RSAC

‘2nd-Wave’ Advanced Threats

Achieve their objective while
trying to evade defensive tools

(past / current)

 Tougher, evolving adversaries who
 grow in sophistication to become context aware and target specific

 know “what they attack and how it is protected”

 shift towards qualitatively stronger attack strategies

Achieve their objective by first
disarming defensive tools

(current / future)

4

→

#RSAC

In practice this means…

 If strong authentication is used, the attacker will steal
 stored keys to clone authenticators

 passwords to impersonate users

 credentials to forge signatures

 If security logs are collected and analyzed, the attacker will
 block the stream of reported logs

 employ log-scrubbing malware to cover its tracks

 tamper with host-side log generation software

5

#RSAC

This presentation

 Gain awareness of new type of threats
 Examples of ‘2nd-wave’ ATs against current security practices

 Describe new solution concepts
1. Anti-cloning enhancements for authentication devices
2. Intrusion-resilient passcode/password verification
3. Anti-breach hardening of SIEM systems

 Learn general strategies
 How to harden security solutions to resist partial compromises

6

Contributors:
Kevin Bowers
John Brainard

Marten van Dijk
Catherine Hart

Ari Juels
Ron Rivest
Emily Shen

NT

Anti-cloning
enhancements for
authentication
devices

#RSAC

Problem: Cloning of authentication devices

 Theft of cryptographic key permits device (and user) impersonation!

Alice’s
device

…
Hello, Alice!

key leakage impossible to distinguish!

1. authentication decision depends solely on key

2. clone is digitally identical to original

any authentication device:
one-time passcode hardware tokens,

software authenticators,
secret-key authentication schemes in sensors,

embedded devices or mobile phones, etc.

8

#RSAC

Key leakage is possible in many ways

 Device
 side-channel attacks

 physical tampering

 key-extracting malware

 Authentication server
 server compromise

 Key stores
 data exfiltration of key records

9

#RSAC

Running example: One-time authentication tokens

 Representative case: resource-constraint authentication device

Alice’s
device

Hello, Alice!

“159 759” (+ PIN)

 token cloning (& PIN phishing), user impersonation

 no assumptions on stored internal secret
state or used passcode-generation method!

10

#RSAC

Solution: Use covert channel to signal token cloning

Key idea: Augment cryptographic key to allow detection of cloning attack

 Token generates: passcode + signal

11

Signal type Cloning detection Assumption

1. Silent Alarm token tampering
or compromise

immediate sensing capability
at the token

2. Drifting Key any leakage eventual regular token usage

key-based
status update,

secretly embedded
into passcode

#RSAC

Silent alarms

 Embed random secret “health” state ρ0 ∈ {0, 1}n known by server

 Upon sensing tampering, change to random state ρ1 ∈ {0, 1}n − {ρ0}

 Security parameter n controls signal secrecy

12

passcode + “OK” passcode + “attack” ✔ ✗

ρ0 ρ0 → ρ1 ρ =?
“OK” “attack”

#RSAC

Secret and forward-secure state transitions

Health state transition from ρ0 to ρ1 should be

1. unpredictable: Attacker can’t reset state to “OK”

 e.g., derive pseudorandom states from key via one-way hashing

2. forward secure: Attacker can’t learn “attack” state via a replay attack

 e.g., update key irreversibly through one-way hashing

13

s1 = f s2 f s3 f … sk f sk+1

token
cloning ✗

ρ0 ρ1
g

key g
✗

#RSAC

Properties of silent alarms

 Implements simple authenticated-encryption scheme on 1-bit alerts

 Biased authenticity
 an adversary can only compute a “1” encoding, but not a “0” one

 alarm is unchangeable, i.e., cannot be turned off, thus persistent

 One-time pad confidentiality
 with secret ρ0, an adversary cannot determine

whether state ρ is a “0” or “1” encoding

 alarm is undetectable, thus silent

14

0 state 1 state

✔

✗
ρ0

ρ

#RSAC

Drifting keys

 Embed randomly and periodically evolving secret “uniqueness” state σ ∈ {0, 1}m

 A cloned token’s state σ* will likely divert from σ

 Inconsistent states collected in parallel are eventually detected by server

15

✔ ✗

σ = b1b2b3 b1b2b3 σ’ = b1b2b3

passcode + b1b2b3

b1b2b3

passcode + b1b2b3
✔

b1b2b3≠

σ*

#RSAC

 Evolving drifting keys

 Uniqueness state consists of 1-bit keys that “drift” regularly & randomly
σ = b1b2…bm → σ’ = b1’b2’…bm’ → σ’’ = b1’’b2’’…bm’’ → …

 Uniformly staggered updates
 periodic round-robin bit(s) randomization

 e.g., keep 7 bits and randomly update one bit every day

16

Mon Tue Fri Wed Thu Sat Sun

0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0

#RSAC

Properties of drifting keys

17

Key
state

Time

≠ σ
σ’

σ*

breach/
cloning

forgery/
detection

authentication

valid
range
for σ*

valid
range
for σ

slack ξ

#RSAC

Transmitting health and uniqueness states

 New challenge: The token-to-server channel is very restricted
 low-bandwidth: only available channel is embedding into passcode itself

 each bit allocated to signal weakens the security of passcode
 susceptible to human-transcription errors

 signal should not be distorted due to passcode mistyping!

 lossy: displayed passcodes are rarely typed in

 e.g., >99.994% of 1-min passcodes are not typed in for 6 logins/week

 Solution: Compress each state down to 1 bit, then encode 2 bits
 into an “offset” that is added to the passcode

18

#RSAC

Signal compression, encoding and processing
Passcode generation (time t)

 State compression and encoding
 derive pseudorandom masks xt, yt

from current key st, |xt|=|ρt|, |yt|=|σt|

 sample silent alarm bit sat = ρt xt

 sample drifting-keys bit dkt = σt yt

 set offset C as secret encoding of satdkt

 produce enhanced
passcode Pt⊕C
(using digit-wise
mod 10 addition)

Passcode verification (time t)

 State recovery and checking
 accept received passcode Q’ only if C =

Q’-Pt is a valid codeword of secret code

 decode C to recover sat and dkt

 perform probabilistic check sat =? ρ0 xt

 perfect soundness, 50% false negative

 0.75 prob. of break-in detection in 2 logins

 check for inconsistencies in set of equations
{dkt = σt yt| login at t}, i.e., if system
becomes infeasible

19

0
0

33333333

0
1

33337777

1
0

77773333

Intrusion-resilient
passcode/password
verification

#RSAC

Problem: Compromise of authentication server

 Direct breach at authentication server is catastrophic!

“159 759” + PIN

Ephemerally

Actively

Alice’s
token

Hello, Alice!

✗ ✔ PINs

PIN

true for any secret-key
authentication system!

21

#RSAC

Solution: Split-server verification

 Key idea: Distribute passcode/PIN verification across two servers
 Red server verifies “half” the credentials; blue server verifies other “half”

 Authentication decision relies on both outputs

 Compromise of one server gives no/little advantage to attacker

22

RED
SERVER

BLUE
SERVER

candidate
passcode P Access

Control
Module

P

P

interaction
red decision

blue decision

red processing

blue processing
keeps no

secret state

accept/reject
different facilities /

administrative domains

#RSAC

Split-server passcode verification

 Token-side: Employ two distinct (fixed or forward-secure) secrets

 red secret r is used to derive red partial passcode PR

 blue secret b is used to derive red partial passcode PB

 final passcode P is sum PR ⊕ PB (digit-wise modulo 10)

 Server-side: Red/blue server returns local accept/reject decision;
candidate passcode P’ is accepted if both servers locally accept

 crypto approach: red and blue run privately equality test on P’-PR, PB

 non-crypto approach: red sends least significant half of PR to blue and verifies
the most significant half of candidate passcode (and vice versa)

23

#RSAC

Protecting against double-server attacks

 Goal: defend against non-simultaneous breach of both blue and red servers

 Use forward-secure red/blue partial secrets that periodically “mix”

24

f r2 f r3 f … rk f rk+1 r1

g b2 g b3 g … bk g bk+1 b1

…

e.g., 24 hours

r2=f(r1,h(b1))

b2=g(b1,h(r1))

h h h h

as long as servers are not both compromised in the
same day the authentication system remains secure

#RSAC

Split-server password verification: Honeywords

 Based on decoy passwords, aka honeywords
 Red stores user’s i real password Pi and k-1 fake ones in unlabeled set Ci

 Blue server stores the index di of Pi in set Ci

 Password verification through sequential checks

25

Auth.
Server

Honey-
checker

candidate
password P’

for user i
Access

Control
Module

P’

if there exists j
s.t. P’=Ci[j]

 then R=(i,j)
else REJECT

R

B=true iff di = j
B ACCEPT iff

B=true

Anti-breach hardening
of SIEM systems

#RSAC

Problem: Secure chain of custody in security analytics

 Security alert systems constitute a direct target of a ‘2nd-wave’ AT!
 an attacker may discover, observe or read alert transmissions

 …and accordingly adapt its attack strategy based on SAS behavior!

 an attacker may tamper, suppress or block alert transmissions
 …and eventually disrupt SAS functionality (e.g., using log-scrubbing malware)!

27

Host

Network

Server
SIEM Security Alert System

data loss,
benign failures

(e.g., IDS, syslog,
anti-virus engine)

(>60 products,
Feb 2014) alert1 alert2 alert3 alert1 alert2 alert3 alert3 alert1 alert2 ? alert3 alert1 alert2

 Security alert systems often employ unreliable channels!

#RSAC

Solution: PillarBox, a secure alert-relaying tool

 ensures against alert suppression or tampering

 conceals alerting activity

 features self-protection, transmits alerts persistently

 is agnostic of the exact SAS in use

28

Host Server
SIEM SAS

alert1 alert2 alert3 alert1 alert2 alert3 Network
data loss,

benign failures

#RSAC

PillarBox architecture

29

ALERTER

implements SAS, monitors host to

identify events against a set of alert

rules, creates alert messages and

relays them to BUFFERER

Host

Network

Server

ALERTER BUFFERER

TRANSMITTER

GAP-CHECKER

RECEIVER

DECRYPTER

SAS inputs

BUFFERER-DECRYPTER
implement crypto-assisted
reliable channel &
report integrity failures

TRANSMITTER-RECEIVER
schedule & execute crypto-
enhanced host-to-server
buffer transmissions

GAP-CHECKER
reconstructs alert stream,
checks for missing alerts,

reports “heartbeat” or
“gap alert” failures

#RSAC

Host Server

1. Buffering alerts

 As soon as they are generated, alerts are
 signed and encrypted using a forward-secure secret key (shared by the

server and host) and then stored in a buffer at the host

 periodically or on demand (e.g., every t alerts) transferred to the server

30

(FS) integrity
(FS) confidentiality

✓
✓

1 2 3 4 1 2 3 4

#RSAC

2. Retransmitting alerts

 As before, but now alerts
 are not deleted from buffer but are transferred redundantly

 e.g., when a new alert is generated all buffered alerts are transmitted

31

Host Server

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓

persistence:
missing alerts can only be

attributed to an attack, thus
allowing to signal a “meta alert”

#RSAC

3. Checking heartbeat

 As before, but now alerts
 are transmitted periodically (in regular time intervals)

 if failed to reach the server, they signal a “heartbeat” failure of SAS

32

Host Server

failure detection ✓
traffic concealment ✓

traffic concealment:
imposes a regular pattern of transmissions

(so alerts can be de-correlated)

failure detection:
imposes a minimum frequency of transmission

(allows an upper bound on successful detection)

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓

#RSAC

4. Encrypting fixed-size buffers

 As before, but now alerts

 are stored in an initially random, fixed-size buffer in a round-robin fashion

 are transmitted periodically encrypted as a whole at the buffer level

 if failed to reach the server, they signal a “gap alert” failure of SAS

33

failure detection ✓
traffic concealment ✓

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓ stealth ✓

stealth:
alerting mechanism is completely

hidden from attacker
(at some communication overhead)

Host Server

current index

1 2 3 4 6 5

#RSAC

Summary of solutions

Intrusion-resilient security in log collection

 Key technologies
 key rotation
 covert channels
 forward security
 authenticated encryption
 split-server verification
 secure log buffering
 …

34

Intrusion-resilient (two-factor) authentication

#RSAC

References

 Drifting keys: Kevin D. Bowers, Ari Juels, Ronald L. Rivest, Emily Shen, “Drifting Keys:

Impersonation Detection for Constrained Devices”, INFOCOM 2013: 1025-1033

 Split-server authentication: John Brainard, Ari Juels, Burt Kaliski, Michael Szydlo, “A New Two-

server Approach for Authentication with Short Secrets”, USENIX Security 2003: 201-214

 Honeywords: Ari Juels, Ronald L. Rivest, “Honeywords: Making Password-cracking Detectable”,

ACM CCS 2013: 145-160

 PillarBox: Kevin D. Bowers, Catherine Hart, Ari Juels, Nikos Triandopoulos, “Securing the Data in

Big Data Security Analytics”, IAC ePrint Archive 2013: 625, http://eprint.iacr.org/2013/625

35

#RSAC

Thank you!

Nikos Triandopoulos
nikolaos.triandopoulos@rsa.com

36

	‘2nd-Wave’ Advanced Threats: Preparing for Tomorrow’s Sophisticated Attacks
	Advanced Threats: Enterprises’ toughest enemy
	The “canonical” attack cycle
	‘2nd-Wave’ Advanced Threats
	In practice this means…
	This presentation
	Anti-cloning enhancements for �authentication devices
	Problem: Cloning of authentication devices
	Key leakage is possible in many ways
	Running example: One-time authentication tokens
	Solution: Use covert channel to signal token cloning
	Silent alarms
	Secret and forward-secure state transitions
	Properties of silent alarms
	Drifting keys
	 Evolving drifting keys
	Properties of drifting keys
	Transmitting health and uniqueness states
	Signal compression, encoding and processing
	Intrusion-resilient �passcode/password verification
	Problem: Compromise of authentication server
	Solution: Split-server verification
	Split-server passcode verification
	Protecting against double-server attacks
	Split-server password verification: Honeywords
	Anti-breach hardening of SIEM systems
	Problem: Secure chain of custody in security analytics
	Solution: PillarBox, a secure alert-relaying tool
	PillarBox architecture
	1. Buffering alerts
	2. Retransmitting alerts
	3. Checking heartbeat
	4. Encrypting fixed-size buffers
	Summary of solutions
	References
	Thank you!

