
SESSION ID:

‘2nd-Wave’ Advanced Threats: Preparing for
Tomorrow’s Sophisticated Attacks

ANF-W01

Nikos Triandopoulos
Principal Research Scientist

RSA Laboratories
RSA, The Security Division of EMC

#RSAC

Advanced Threats: Enterprises’ toughest enemy

 Advanced Threats (ATs) are a serious risk facing enterprises today
 comprise well-targeted, persistent attacks

 aim at unauthorized data manipulation or exfiltration

 employ rich attack vectors and unknown strategies

 social engineering
 zero-day malwares / vulnerabilities
 low-and-slow progression

Extremely hard-to-defend, often even hard-to-detect

2

#RSAC

The “canonical” attack cycle

Best defenses in security industry

 Tighter preventative practices
 raise the protection fence

 e.g., multi-factor authentication, data
protections, access control, etc.

 Detection & forensics tools
 visibility – analysis – action

 e.g., security information event
management (SIEM) systems,
security analytics

3

Initial
Compromise

Command
& Control

Lateral
Movement

Data
Exfiltration

initial
compromise

foothold
setup

privilege
escalation

presence
maintenance

internal
reconnaissance

lateral
movement

mission
completion

AT
life cycle

#RSAC

‘2nd-Wave’ Advanced Threats

Achieve their objective while
trying to evade defensive tools

(past / current)

 Tougher, evolving adversaries who
 grow in sophistication to become context aware and target specific

 know “what they attack and how it is protected”

 shift towards qualitatively stronger attack strategies

Achieve their objective by first
disarming defensive tools

(current / future)

4

→

#RSAC

In practice this means…

 If strong authentication is used, the attacker will steal
 stored keys to clone authenticators

 passwords to impersonate users

 credentials to forge signatures

 If security logs are collected and analyzed, the attacker will
 block the stream of reported logs

 employ log-scrubbing malware to cover its tracks

 tamper with host-side log generation software

5

#RSAC

This presentation

 Gain awareness of new type of threats
 Examples of ‘2nd-wave’ ATs against current security practices

 Describe new solution concepts
1. Anti-cloning enhancements for authentication devices
2. Intrusion-resilient passcode/password verification
3. Anti-breach hardening of SIEM systems

 Learn general strategies
 How to harden security solutions to resist partial compromises

6

Contributors:
Kevin Bowers
John Brainard

Marten van Dijk
Catherine Hart

Ari Juels
Ron Rivest
Emily Shen

NT

Anti-cloning
enhancements for
authentication
devices

#RSAC

Problem: Cloning of authentication devices

 Theft of cryptographic key permits device (and user) impersonation!

Alice’s
device

…
Hello, Alice!

key leakage impossible to distinguish!

1. authentication decision depends solely on key

2. clone is digitally identical to original

any authentication device:
one-time passcode hardware tokens,

software authenticators,
secret-key authentication schemes in sensors,

embedded devices or mobile phones, etc.

8

#RSAC

Key leakage is possible in many ways

 Device
 side-channel attacks

 physical tampering

 key-extracting malware

 Authentication server
 server compromise

 Key stores
 data exfiltration of key records

9

#RSAC

Running example: One-time authentication tokens

 Representative case: resource-constraint authentication device

Alice’s
device

Hello, Alice!

“159 759” (+ PIN)

 token cloning (& PIN phishing), user impersonation

 no assumptions on stored internal secret
state or used passcode-generation method!

10

#RSAC

Solution: Use covert channel to signal token cloning

Key idea: Augment cryptographic key to allow detection of cloning attack

 Token generates: passcode + signal

11

Signal type Cloning detection Assumption

1. Silent Alarm token tampering
or compromise

immediate sensing capability
at the token

2. Drifting Key any leakage eventual regular token usage

key-based
status update,

secretly embedded
into passcode

#RSAC

Silent alarms

 Embed random secret “health” state ρ0 ∈ {0, 1}n known by server

 Upon sensing tampering, change to random state ρ1 ∈ {0, 1}n − {ρ0}

 Security parameter n controls signal secrecy

12

passcode + “OK” passcode + “attack” ✔ ✗

ρ0 ρ0 → ρ1 ρ =?
“OK” “attack”

#RSAC

Secret and forward-secure state transitions

Health state transition from ρ0 to ρ1 should be

1. unpredictable: Attacker can’t reset state to “OK”

 e.g., derive pseudorandom states from key via one-way hashing

2. forward secure: Attacker can’t learn “attack” state via a replay attack

 e.g., update key irreversibly through one-way hashing

13

s1 = f s2 f s3 f … sk f sk+1

token
cloning ✗

ρ0 ρ1
g

key g
✗

#RSAC

Properties of silent alarms

 Implements simple authenticated-encryption scheme on 1-bit alerts

 Biased authenticity
 an adversary can only compute a “1” encoding, but not a “0” one

 alarm is unchangeable, i.e., cannot be turned off, thus persistent

 One-time pad confidentiality
 with secret ρ0, an adversary cannot determine

whether state ρ is a “0” or “1” encoding

 alarm is undetectable, thus silent

14

0 state 1 state

✔

✗
ρ0

ρ

#RSAC

Drifting keys

 Embed randomly and periodically evolving secret “uniqueness” state σ ∈ {0, 1}m

 A cloned token’s state σ* will likely divert from σ

 Inconsistent states collected in parallel are eventually detected by server

15

✔ ✗

σ = b1b2b3 b1b2b3 σ’ = b1b2b3

passcode + b1b2b3

b1b2b3

passcode + b1b2b3
✔

b1b2b3≠

σ*

#RSAC

 Evolving drifting keys

 Uniqueness state consists of 1-bit keys that “drift” regularly & randomly
σ = b1b2…bm → σ’ = b1’b2’…bm’ → σ’’ = b1’’b2’’…bm’’ → …

 Uniformly staggered updates
 periodic round-robin bit(s) randomization

 e.g., keep 7 bits and randomly update one bit every day

16

Mon Tue Fri Wed Thu Sat Sun

0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0

#RSAC

Properties of drifting keys

17

Key
state

Time

≠ σ
σ’

σ*

breach/
cloning

forgery/
detection

authentication

valid
range
for σ*

valid
range
for σ

slack ξ

#RSAC

Transmitting health and uniqueness states

 New challenge: The token-to-server channel is very restricted
 low-bandwidth: only available channel is embedding into passcode itself

 each bit allocated to signal weakens the security of passcode
 susceptible to human-transcription errors

 signal should not be distorted due to passcode mistyping!

 lossy: displayed passcodes are rarely typed in

 e.g., >99.994% of 1-min passcodes are not typed in for 6 logins/week

 Solution: Compress each state down to 1 bit, then encode 2 bits
 into an “offset” that is added to the passcode

18

#RSAC

Signal compression, encoding and processing
Passcode generation (time t)

 State compression and encoding
 derive pseudorandom masks xt, yt

from current key st, |xt|=|ρt|, |yt|=|σt|

 sample silent alarm bit sat = ρt  xt

 sample drifting-keys bit dkt = σt  yt

 set offset C as secret encoding of satdkt

 produce enhanced
passcode Pt⊕C
(using digit-wise
mod 10 addition)

Passcode verification (time t)

 State recovery and checking
 accept received passcode Q’ only if C =

Q’-Pt is a valid codeword of secret code

 decode C to recover sat and dkt

 perform probabilistic check sat =? ρ0  xt

 perfect soundness, 50% false negative

 0.75 prob. of break-in detection in 2 logins

 check for inconsistencies in set of equations
{dkt = σt  yt| login at t}, i.e., if system
becomes infeasible

19

0
0

33333333

0
1

33337777

1
0

77773333

Intrusion-resilient
passcode/password
verification

#RSAC

Problem: Compromise of authentication server

 Direct breach at authentication server is catastrophic!

“159 759” + PIN

Ephemerally

Actively

Alice’s
token

Hello, Alice!

✗ ✔ PINs

PIN

true for any secret-key
authentication system!

21

#RSAC

Solution: Split-server verification

 Key idea: Distribute passcode/PIN verification across two servers
 Red server verifies “half” the credentials; blue server verifies other “half”

 Authentication decision relies on both outputs

 Compromise of one server gives no/little advantage to attacker

22

RED
SERVER

BLUE
SERVER

candidate
passcode P Access

Control
Module

P

P

interaction
red decision

blue decision

red processing

blue processing
keeps no

secret state

accept/reject
different facilities /

administrative domains

#RSAC

Split-server passcode verification

 Token-side: Employ two distinct (fixed or forward-secure) secrets

 red secret r is used to derive red partial passcode PR

 blue secret b is used to derive red partial passcode PB

 final passcode P is sum PR ⊕ PB (digit-wise modulo 10)

 Server-side: Red/blue server returns local accept/reject decision;
candidate passcode P’ is accepted if both servers locally accept

 crypto approach: red and blue run privately equality test on P’-PR, PB

 non-crypto approach: red sends least significant half of PR to blue and verifies
the most significant half of candidate passcode (and vice versa)

23

#RSAC

Protecting against double-server attacks

 Goal: defend against non-simultaneous breach of both blue and red servers

 Use forward-secure red/blue partial secrets that periodically “mix”

24

f r2 f r3 f … rk f rk+1 r1

g b2 g b3 g … bk g bk+1 b1

…

e.g., 24 hours

r2=f(r1,h(b1))

b2=g(b1,h(r1))

h h h h

as long as servers are not both compromised in the
same day the authentication system remains secure

#RSAC

Split-server password verification: Honeywords

 Based on decoy passwords, aka honeywords
 Red stores user’s i real password Pi and k-1 fake ones in unlabeled set Ci

 Blue server stores the index di of Pi in set Ci

 Password verification through sequential checks

25

Auth.
Server

Honey-
checker

candidate
password P’

for user i
Access

Control
Module

P’

if there exists j
s.t. P’=Ci[j]

 then R=(i,j)
else REJECT

R

B=true iff di = j
B ACCEPT iff

B=true

Anti-breach hardening
of SIEM systems

#RSAC

Problem: Secure chain of custody in security analytics

 Security alert systems constitute a direct target of a ‘2nd-wave’ AT!
 an attacker may discover, observe or read alert transmissions

 …and accordingly adapt its attack strategy based on SAS behavior!

 an attacker may tamper, suppress or block alert transmissions
 …and eventually disrupt SAS functionality (e.g., using log-scrubbing malware)!

27

Host

Network

Server
SIEM Security Alert System

data loss,
benign failures

(e.g., IDS, syslog,
anti-virus engine)

(>60 products,
Feb 2014) alert1 alert2 alert3 alert1 alert2 alert3 alert3 alert1 alert2 ? alert3 alert1 alert2

 Security alert systems often employ unreliable channels!

#RSAC

Solution: PillarBox, a secure alert-relaying tool

 ensures against alert suppression or tampering

 conceals alerting activity

 features self-protection, transmits alerts persistently

 is agnostic of the exact SAS in use

28

Host Server
SIEM SAS

alert1 alert2 alert3 alert1 alert2 alert3 Network
data loss,

benign failures

#RSAC

PillarBox architecture

29

ALERTER

implements SAS, monitors host to

identify events against a set of alert

rules, creates alert messages and

relays them to BUFFERER

Host

Network

Server

ALERTER BUFFERER

TRANSMITTER

GAP-CHECKER

RECEIVER

DECRYPTER

SAS inputs

BUFFERER-DECRYPTER
implement crypto-assisted
reliable channel &
report integrity failures

TRANSMITTER-RECEIVER
schedule & execute crypto-
enhanced host-to-server
buffer transmissions

GAP-CHECKER
reconstructs alert stream,
checks for missing alerts,

reports “heartbeat” or
“gap alert” failures

#RSAC

Host Server

1. Buffering alerts

 As soon as they are generated, alerts are
 signed and encrypted using a forward-secure secret key (shared by the

server and host) and then stored in a buffer at the host

 periodically or on demand (e.g., every t alerts) transferred to the server

30

(FS) integrity
(FS) confidentiality

✓
✓

1 2 3 4 1 2 3 4

#RSAC

2. Retransmitting alerts

 As before, but now alerts
 are not deleted from buffer but are transferred redundantly

 e.g., when a new alert is generated all buffered alerts are transmitted

31

Host Server

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓

persistence:
missing alerts can only be

attributed to an attack, thus
allowing to signal a “meta alert”

#RSAC

3. Checking heartbeat

 As before, but now alerts
 are transmitted periodically (in regular time intervals)

 if failed to reach the server, they signal a “heartbeat” failure of SAS

32

Host Server

failure detection ✓
traffic concealment ✓

traffic concealment:
imposes a regular pattern of transmissions

(so alerts can be de-correlated)

failure detection:
imposes a minimum frequency of transmission

(allows an upper bound on successful detection)

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓

#RSAC

4. Encrypting fixed-size buffers

 As before, but now alerts

 are stored in an initially random, fixed-size buffer in a round-robin fashion

 are transmitted periodically encrypted as a whole at the buffer level

 if failed to reach the server, they signal a “gap alert” failure of SAS

33

failure detection ✓
traffic concealment ✓

(FS) integrity
(FS) confidentiality

✓
✓

persistence ✓ stealth ✓

stealth:
alerting mechanism is completely

hidden from attacker
(at some communication overhead)

Host Server

current index

1 2 3 4 6 5

#RSAC

Summary of solutions

Intrusion-resilient security in log collection

 Key technologies
 key rotation
 covert channels
 forward security
 authenticated encryption
 split-server verification
 secure log buffering
 …

34

Intrusion-resilient (two-factor) authentication

#RSAC

References

 Drifting keys: Kevin D. Bowers, Ari Juels, Ronald L. Rivest, Emily Shen, “Drifting Keys:

Impersonation Detection for Constrained Devices”, INFOCOM 2013: 1025-1033

 Split-server authentication: John Brainard, Ari Juels, Burt Kaliski, Michael Szydlo, “A New Two-

server Approach for Authentication with Short Secrets”, USENIX Security 2003: 201-214

 Honeywords: Ari Juels, Ronald L. Rivest, “Honeywords: Making Password-cracking Detectable”,

ACM CCS 2013: 145-160

 PillarBox: Kevin D. Bowers, Catherine Hart, Ari Juels, Nikos Triandopoulos, “Securing the Data in

Big Data Security Analytics”, IAC ePrint Archive 2013: 625, http://eprint.iacr.org/2013/625

35

#RSAC

Thank you!

Nikos Triandopoulos
nikolaos.triandopoulos@rsa.com

36

	‘2nd-Wave’ Advanced Threats: Preparing for Tomorrow’s Sophisticated Attacks
	Advanced Threats: Enterprises’ toughest enemy
	The “canonical” attack cycle
	‘2nd-Wave’ Advanced Threats
	In practice this means…
	This presentation
	Anti-cloning enhancements for �authentication devices
	Problem: Cloning of authentication devices
	Key leakage is possible in many ways
	Running example: One-time authentication tokens
	Solution: Use covert channel to signal token cloning
	Silent alarms
	Secret and forward-secure state transitions
	Properties of silent alarms
	Drifting keys
	 Evolving drifting keys
	Properties of drifting keys
	Transmitting health and uniqueness states
	Signal compression, encoding and processing
	Intrusion-resilient �passcode/password verification
	Problem: Compromise of authentication server
	Solution: Split-server verification
	Split-server passcode verification
	Protecting against double-server attacks
	Split-server password verification: Honeywords
	Anti-breach hardening of SIEM systems
	Problem: Secure chain of custody in security analytics
	Solution: PillarBox, a secure alert-relaying tool
	PillarBox architecture
	1. Buffering alerts
	2. Retransmitting alerts
	3. Checking heartbeat
	4. Encrypting fixed-size buffers
	Summary of solutions
	References
	Thank you!

