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Advanced Threats: Enterprises’ toughest enemy 

 Advanced Threats (ATs) are a serious risk facing enterprises today 
 comprise well-targeted, persistent attacks 

 aim at unauthorized data manipulation or exfiltration 

 employ rich attack vectors and unknown strategies 

 social engineering 
 zero-day malwares / vulnerabilities 
 low-and-slow progression 

Extremely hard-to-defend, often even hard-to-detect  
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The “canonical” attack cycle 

Best defenses in security industry  

 Tighter preventative practices 
 raise the protection fence 

 e.g., multi-factor authentication, data 
protections, access control, etc. 

 Detection & forensics tools 
 visibility – analysis – action 

 e.g., security information event 
management (SIEM) systems, 
security analytics 
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‘2nd-Wave’ Advanced Threats 

Achieve their objective while 
trying to evade defensive tools 

(past / current) 

 Tougher, evolving adversaries who 
 grow in sophistication to become context aware and target specific 

 know “what they attack and how it is protected” 

 shift towards qualitatively stronger attack strategies 

Achieve their objective by first  
disarming defensive tools 

(current / future) 
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In practice this means… 

 If strong authentication is used, the attacker will steal 
 stored keys to clone authenticators 

 passwords to impersonate users 

 credentials to forge signatures 

 If  security logs are collected and analyzed, the attacker will 
 block the stream of reported logs 

 employ log-scrubbing malware to cover its tracks 

 tamper with host-side log generation software 
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This presentation 

 Gain awareness of new type of threats 
 Examples of ‘2nd-wave’ ATs against current security practices 

 Describe new solution concepts 
1. Anti-cloning enhancements for authentication devices 
2. Intrusion-resilient passcode/password verification 
3. Anti-breach hardening of SIEM systems 

 Learn general strategies 
 How to harden security solutions to resist partial compromises 
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Problem: Cloning of authentication devices  

 Theft of cryptographic key permits device (and user) impersonation! 

Alice’s  
device 

… 
Hello, Alice! 

key leakage impossible to distinguish! 

1. authentication decision depends solely on key 

2. clone is digitally identical to original 

any authentication device:  
one-time passcode hardware tokens,  

software authenticators,  
secret-key authentication schemes in sensors, 

embedded devices or mobile phones, etc. 
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Key leakage is possible in many ways 

 Device 
 side-channel attacks 

 physical tampering 

 key-extracting malware 

 Authentication server 
 server compromise 

 Key stores 
 data exfiltration of key records 
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Running example: One-time authentication tokens 

 Representative case: resource-constraint authentication device 

Alice’s  
device 

Hello, Alice! 

“159 759” (+ PIN) 

 token cloning (& PIN phishing), user impersonation 

 no assumptions on stored internal secret  
state or used passcode-generation method! 
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Solution: Use covert channel to signal token cloning 

Key idea: Augment cryptographic key to allow detection of cloning attack 

        Token generates:     passcode + signal 
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Signal type Cloning detection Assumption 

1. Silent Alarm token tampering  
or compromise 

immediate sensing capability  
at the token 

2. Drifting Key any leakage eventual regular token usage 

key-based  
status update, 

secretly embedded  
into passcode 
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Silent alarms 

 Embed random secret “health” state ρ0 ∈ {0, 1}n known by server 

 Upon sensing tampering, change to random state  ρ1 ∈ {0, 1}n − {ρ0} 

 Security parameter n controls signal secrecy 
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passcode + “OK” passcode + “attack” ✔ ✗ 

ρ0 ρ0 →  ρ1 ρ =?  
“OK” “attack” 
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Secret and forward-secure state transitions 

Health state transition from ρ0 to ρ1 should be  

1. unpredictable: Attacker can’t reset state to “OK” 

 e.g., derive pseudorandom states from key via one-way hashing 

2. forward secure: Attacker can’t learn “attack” state via a replay attack 

 e.g., update key irreversibly through one-way hashing 
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Properties of silent alarms 

 Implements simple authenticated-encryption scheme on 1-bit alerts 

 Biased authenticity 
 an adversary can only compute a “1” encoding, but not a “0” one 

 alarm is unchangeable, i.e., cannot be turned off, thus persistent 

 One-time pad confidentiality 
 with secret ρ0, an adversary cannot determine  

whether state ρ is a “0” or “1” encoding 

 alarm is undetectable, thus silent 
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Drifting keys 

 Embed randomly and periodically evolving secret “uniqueness” state σ ∈ {0, 1}m 

 A cloned token’s state σ* will likely divert from σ 

 Inconsistent states collected in parallel are eventually detected by server 
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 Evolving drifting keys 

 Uniqueness state consists of 1-bit keys that “drift” regularly & randomly 
σ = b1b2…bm   →   σ’ = b1’b2’…bm’   →   σ’’ = b1’’b2’’…bm’’   →   … 

 Uniformly staggered updates 
 periodic round-robin bit(s) randomization 

 e.g., keep 7 bits and randomly update one bit every day 
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Mon Tue Fri Wed Thu Sat Sun 

0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 
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Properties of drifting keys 
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Transmitting health and uniqueness states 

 New challenge: The token-to-server channel is very restricted 
 low-bandwidth: only available channel is embedding into passcode itself 

 each bit allocated to signal weakens the security of passcode 
 susceptible to human-transcription errors 

 signal should not be distorted due to passcode mistyping! 

 lossy: displayed passcodes are rarely typed in 

 e.g., >99.994% of 1-min passcodes are not typed in for 6 logins/week 

 Solution: Compress each state down to 1 bit, then encode 2 bits  
   into an “offset” that is added to the passcode 
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Signal compression, encoding and processing 
Passcode generation (time t) 

 State compression and encoding 
 derive pseudorandom masks xt, yt  

from current key st, |xt|=|ρt|, |yt|=|σt| 

 sample silent alarm bit sat = ρt  xt 

 sample drifting-keys bit dkt = σt  yt 

 set offset C as secret encoding of satdkt 

 produce enhanced 
passcode Pt⊕C  
(using digit-wise  
mod 10 addition) 

Passcode verification (time t) 

 State recovery and checking 
 accept received passcode Q’ only if C =  

Q’-Pt is a valid codeword of secret code 

 decode C to recover sat and dkt 

 perform probabilistic check sat =? ρ0  xt 

 perfect soundness, 50% false negative 

 0.75 prob. of break-in detection in 2 logins 

 check for inconsistencies in set of equations 
{dkt = σt  yt| login at t}, i.e., if system 
becomes infeasible 
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Problem: Compromise of authentication server 

 Direct breach at authentication server is catastrophic! 

“159 759” + PIN 

Ephemerally 

Actively 

Alice’s  
token 

Hello, Alice! 

✗ ✔ PINs 

PIN 

true for any secret-key 
authentication system! 
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Solution: Split-server verification 

 Key idea: Distribute passcode/PIN verification across two servers 
 Red server verifies “half” the credentials; blue server verifies other “half” 

 Authentication decision relies on both outputs 

 Compromise of one server gives no/little advantage to attacker 
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Split-server passcode verification 

 Token-side: Employ two distinct (fixed or forward-secure) secrets 

 red secret r is used to derive red partial passcode PR 

 blue secret b is used to derive red partial passcode PB 

 final passcode P is sum PR ⊕ PB (digit-wise modulo 10) 

 Server-side: Red/blue server returns local accept/reject decision;  
candidate passcode P’ is accepted if both servers locally accept 

 crypto approach: red and blue run privately equality test on P’-PR, PB 

 non-crypto approach: red sends least significant half of PR to blue and verifies  
the most significant half of candidate passcode (and vice versa) 
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Protecting against double-server attacks 

 Goal: defend against non-simultaneous breach of both blue and red servers 

 Use forward-secure red/blue partial secrets that periodically “mix” 
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h h h h 

as long as servers are not both compromised in the  
same day the authentication system remains secure  
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Split-server password verification: Honeywords 

 Based on decoy passwords, aka honeywords 
 Red stores user’s i real password Pi and k-1 fake ones in unlabeled set Ci 

 Blue server stores the index di of Pi in set Ci 

 Password verification through sequential checks 
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Problem: Secure chain of custody in security analytics 

 Security alert systems constitute a direct target of a ‘2nd-wave’ AT! 
 an attacker may discover, observe or read alert transmissions 

 …and accordingly adapt its attack strategy based on SAS behavior! 

 an attacker may tamper, suppress or block alert transmissions 
 …and eventually disrupt SAS functionality (e.g., using log-scrubbing malware)!  
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Solution: PillarBox, a secure alert-relaying tool 

 ensures against alert suppression or tampering 

 conceals alerting activity 

 features self-protection, transmits alerts persistently 

 is agnostic of the exact SAS in use 

28 

Host Server 
SIEM SAS 

alert1 alert2 alert3 alert1 alert2 alert3 Network 
data loss,  

benign failures 



#RSAC 

PillarBox architecture 
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Host Server 

1. Buffering alerts 

 As soon as they are generated, alerts are 
 signed and encrypted using a forward-secure secret key (shared by the 

server and host) and then stored in a buffer at the host 

 periodically or on demand (e.g., every t alerts) transferred to the server 
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2. Retransmitting alerts 

 As before, but now alerts 
 are not deleted from buffer but are transferred redundantly 

 e.g., when a new alert is generated all buffered alerts are transmitted 
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Host Server 

(FS) integrity 
(FS) confidentiality 

✓ 
✓ 

persistence ✓ 

persistence:  
missing alerts can only be 

attributed to an attack, thus 
allowing to signal a “meta alert”  
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3. Checking heartbeat 

 As before, but now alerts 
 are transmitted periodically (in regular time intervals) 

 if failed to reach the server, they signal a “heartbeat” failure of SAS 
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Host Server 

failure detection ✓ 
traffic concealment ✓ 

traffic concealment:  
imposes a regular pattern of transmissions  

(so alerts can be de-correlated) 

failure detection:  
imposes a minimum frequency of transmission  

(allows an upper bound on successful detection) 
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✓ 
✓ 

persistence ✓ 
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4. Encrypting fixed-size buffers 

 As before, but now alerts 

 are stored in an initially random, fixed-size buffer in a round-robin fashion 

 are transmitted periodically encrypted as a whole at the buffer level 

 if failed to reach the server, they signal a “gap alert” failure of SAS 
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Summary of solutions 

Intrusion-resilient security in log collection 

 Key technologies 
 key rotation 
 covert channels 
 forward security 
 authenticated encryption 
 split-server verification 
 secure log buffering 
 … 
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Intrusion-resilient (two-factor) authentication 
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Thank you! 
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