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Some evaluations for involutory diffusion 

layer of 64-bit AES-like block ciphers based 

on the hadamard matrices 
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Tóm tắt— Trong bài báo này, chúng tôi phân loại 

và đánh giá các tầng khuếch tán cuộn của mã khối 

64-bit tựa AES dựa trên các ma trận Hadamard. 

Đầu tiên, chúng tôi tính toán số lượng các điểm cố 

định trong lớp này. Sau đó, chúng tôi thực hiện một 

cuộc khảo sát thực tế trên các ma trận Hadamard 

4×4-bit trong GF(2
4
) và thay đổi các số cổng XOR 

được sử dụng để cài đặt như mô tả trong [9] nhằm 

chọn ra một ma trận phù hợp để xây dựng các tầng 

khuếch tán cuộn của mã khối tựa AES với kích 

thước khối 64-bit. 

Abstract— In this paper, we classify and evaluate 

the involutory diffusion layer of 64-bit AES-like 

block ciphers based on the Hadamard matrices. 

Firstly, we calculate the number of fixed points in 

this layer. After that, we perform a practical 

investigation on the 4×4-bit Hadamard matrices in 

GF(2
4
) and modify the number of XOR gates used 

to implement as described in [9] to choose a suitable 

matrix for constructing the involutory diffusion layer 

of AES-like block ciphers with 64-bit block size. 

Keywords— involutory diffusion layer; Hadamard 

matrix; fixed point; XOR Count. 

I. INTRODUCTION 

Since 2000, the standardization of Rijndael 

being as the Advanced Encryption Standard 

(AES), there are a surprisingly large number of 

new primitives which have the similar 

components as in the AES block cipher [1]. For 

example, some AES-like block ciphers such as 

ANUBIS [12], LED [4], PRINCE [13],… also, 

some hash functions as PHOTON [5], GOST R 

34.11.2012 [6]... This is mostly because applied 

the wide trail strategy. This strategy is not only 

guarantee good diffusion properties but also allow 

the designers to easily give a security bound 

against the differential and linear cryptanalysis 

[11]. Moreover, as another advantage, this split 

the chosen of the linear layer and the non-linear 

one separately. For AES-like block ciphers, (all as 

above), the diffusion layer includes a linear 

transformation such as MixColumns and some as 

ShiftRows in AES. For this layer, some secure 

criteria about the diffusion property have been 

proposed. In particular, the essential requirement 

is these transformation have a high branch number 

(see [1]). Moreover, another criterion is fixed 

points which are exploited in some recently 

effective attacks (see [2]). Finally, an important 

requirement is the hardware-implementation 

ability of the diffusion layer in these ciphers, 

specially in 64-bit block ciphers tailored for 

implementation in constrained environments. 

     Related works. In [16], we have considered a 

general model of diffusion which using an 

alternative transformation instead of ShiftRows 

operator for a 64-bit lightweight block cipher. 

However, we have not proposed choosing a particular 

MDS matrix for this MixColumns operator. 

The authors of [7] have proposed a method for 

constructing the involutory MDS matrices based 

on two Vandermond matrices. Another method for 

building a MDS matrix with an arbitrary size, 

which is a form as the Cauchy matrix, has been 

given in [8,10]. These obtained matrices are the 

Hadamard matrices. By the most recently research 

of S.M.Sim et al. in [9] about the involutory MDS 

Hadamard matrices using in the lightweight 

designs, they are only interested in the branch 

number of the obtained diffusion layer and their 

hardware-implementation ability but not about 

fixed point property. 

     Our Contribution. In this paper, based on the 

proposed model which using a transformation like 

ShiftRows operator, we consider of finding an 

involutory MDS Hadamard matrix using a 

transformation like MixColumns to construct a 

secure involutory diffusion layer effectively. First, 

we consider the cryptographic criteria (branch 

numbers, fixed points) and perform both a 

searching for all 44-bit MDS Hadamard 

matrices in 4

2
 and a more precisely calculation of 

number of  XOR count than in [9]. Then, we 

consider and analyze the best implemented matrix 

of this form. 

     Outline. Our paper is structured as follow. In 

Section 2, we introduce some related notions. 

Next, in Section 3 we propose a model of 

diffusion which has AES-like properties and recall 

some results of the general model, also applies 
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method of [2] to implies the number of fixed 

points for the diffusion layer using the involutory 

Hadamard matrices. Finally, In Section 4, we 

classify the Hadamard matrices of size 44 in 4

2
 

and give some implemented evaluations of the 

involutory Hadamard matrices.  

II. PRELIMINARIES 

A. Notions 

     Let 
2r be a finite field of 2

r
 elements, 1r  . 

Since 
2r be isomorphic to polynomial in  2 X  

which is reduced by an irreducible polynomial 

p(X) of degree r, i.e, each element in 
2r  can be 

considered as a polynomial a(X) of degree r –1 

with coefficients in 2  as follow: 

 
1

2

0

, ,
r

i i i

i

a X b X b




  0 1i r   . We can 

also consider a(X) as a sequence of r bit (br-

1,…,b0). In the remains of this paper, an element 

 in 
2r  can be seen as a polynomial a(X) or a r-

bit binary sequence. The addition on 
2r is simply 

defined as the exclusive-OR (XOR) operation of 

coefficients of polynomials with respect to each 

elements, which does not depend on the choice of 

irreducible polynomial p(X). However, we need to 

determine the irreducible polynomial of degree r 

when we work with the multiplications. In this 

case, we define this field as  
2

/r p X . 

B. The MDS and Hadamard matrices 

     The Maximal Distance Separable matrices play 

important role in cryptography designs due to it 

guarantees a perfect diffusion layer. In this 

section, we recall some notions, properties of 

MDS matrices. We denote Ik be an unit matrix of 

size kk. 

     Definition 1 ([9]). The branch number of a 

kk matrix M on 
2r  is the minimum number of 

non-zero components of input vector v and output 

vector u = v.M (denoted by wt(v) and wt(u), 

respectively) for all    
2

/ 0r

k

v .That means, if 

the branch number equals to     
0

min w w
v

t v t u


  

and the optimal values k+1 obtains, then we say 

that M is a MDS matrix. 

Definition 2 ([9]). A finite field Hadamard (or 

simply called Hadamard) matrix H is a kk 

matrix, with k = 2
s
, that can be represented by two 

other submatrices H1 and H2 which are also 

Hadamard matrices: 

1 2

2 1

H H
H

H H

 
  
 

 

As in [9], we denoted by had(h0, h1,…,hk-1) a 

Hadamard matrix (with hi = H0,i standing for the 

entries of the first row of the matrix), where Hi,j = 

i jh 
 and 2sk  . By multiplying directly, we see 

that if H=had(h0,h1,…,hk-1) is  a Hadamard matrix 

then 

2

kH H c I    

where 2 2 2 2

0 1 1... kc h h h     . In other words, the 

product of a Hadamard matrix with itself is a 

multiple of an identity matrix, where the multiple 

c
2
 is the sum of the square of the elements from 

the first row. Thus, an important and direct 

subsequence is that a Hadamard matrix H is 

involutory on 
2r  if the sum 0 1 1... kh h h     

equal to 1.  

C. Evaluate the number of XOR operations used to 

implement the matrix multiplication 

     In this section, we represent a notion, XOR 

count, that we will use as a measure to evaluate 

the lightweightness of a given matrix. The XOR 

count depends on the finite field and irreducible 

polynomial which is considered. Evaluations 

based on XOR count are new line in implement 

evaluating some cryptography components and 

exploited in many recent research. As described in 

[15], the low XOR count will be related to the 

minimization of implement area. In order to 

compute implement source of the MixColumns 

layer, we often convert it to considering the 

necessary XOR count for the multiplication of 

matrix M which represent MixColumns. 

Moreover, the number of multiplications when 

multiply one row of M by one column of an 

arbitrary state matrix  equal to  
1

-1
k

ii
n r


   

(see [15] for detail) where i  be the XOR count of 

the i
th
 element in a row of matrix M, n be the 

number of non-zero number component in this 

row and r be the dimension of the finite field. 

Then, in order to calculate the XOR count to 

perform the matrix multiplication, we need to find 

the total XOR counts which are implemented for 

all rows of the matrix. But in some recent block 

ciphers, the matrices which represent the diffusion 

layer are often chosen such that we just implement 

only one row of the matrix but we can perform 
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computations of output values of the matrix 

following the strategy based on companion 

matrices in [3] or Hadamard matrices which we 

were considering in this paper. 

III. THE INVOLUTORY DIFFUSION LAYER 

OF THE 64-BIT AES-LIKE BLOCK CUPHERS 

BASED ON THE HADAMARD MATRICES 

A. Promoted 64-bit diffusion layer mode 

In [16], we have proposed a block cipher 

model which has a SPN structure similar as 64-bit 

AES, where the diffusion layer includes a 

TranCells transformation, is a cell transposition 

(cell is a nibble or 4-bit string) (see Figure.1), and 

a MixColumns transformation based on a general 

MDS matrix as follow: 

We have proved that this model is secure 

against the differential and linear cryptanalysis 

similar as AES by the number of active S-boxes 

as follow: 

     Proposition 1. (Proposition 2, [16]) The 

minimal number of active cell in four arbitrary 

consecutive rounds equals to 25. 

In this paper, we consider MixColumns 

transformations based on the involutory MDS 

matrices of size 44 in 42
 has the form Had(a0, 

a1, a2, a3)  where ai  4

2 \ 0 . 

B. The number of fixed points in the promoted 

diffusion layer based on the Hadamard matrix 

In our model, we can represent the diffusion 

layer as a multiplication of matrix A of size 

1616 by a column vector of size 16 when using 

both TranCells and MixColumns transformations. 

The number of fixed points in this 64-bit diffusion 

layer equal to exact the solutions of equation 

  0A I X  , where I be the unit matrix of size 

1616,   4

0 1 15 2, ,..., , , 0,1,...,15iX x x x x i   . 

More deep analysis about fixed points can be seen 

in [2]. 

Fact 1. The TranCells transformation does 

not effect the number of fixed points in the 

diffusion layer which includes it. 

Therefore, the number of fixed points in the 

proposed diffusion layer model equal to the 

number of fixed points of the MixColumns 

transformation. The essence of the MixColumns 

transformation is that performing multiply matrix 

44 M by 4 distinct columns of a state matrix 4 

times. Assume that L* be the transformation has 

representative matrix M. Then, 

     Fact 2. If the transformation L* has *L
N  fixed 

points, then MixColumns has *

4

L
N  fixed points, 

that is exact fixed points of the diffusion layer. 

     Proposition 2. The diffusion layer which 

includes 2 transformations TranCells and 

MixColumns, where the MixColumns transformation 

using the involutory MDS Hadamard matrix of size 

44 in 42
, has 2

32
 fixed points. 

     Proof: We consider A is a involutory MDS 

Hadamard matrix of size 44 in 42
represented 

as A= had(a0,a1,a2,a3), where ai  4

2 \ 0  and a0 

a1 a2 a3=1 i.e, a01= a1 a2 a3. Then the 

number of fixed points on the proposed diffusion 

layer which use matrix A in the MixColumns 

transformation is 
  4 4 4

2
rank A I

LN
   

 . Let’s 

consider A I , where I be the unit matrix of size 

44, we have: 

 

1 2 3 1 2 3

1 1 2 3 3 2

2 3 1 2 3 1

3 2 1 1 2 3

rank

rank 2

A I

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 

  
 

 
  
  
 

  

 

Therefore, we have  4 4 4 2 322 2LN
 

       

Our analysis research show that if we use the 

involutory MDS Hadamard matrices in the 

MixColumns transformation as in the considered 

diffusion layer model then there exist many 

fixed points. 
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Figure 1. The proposed diffusion layer model

IV. CLASSIFICATION OF THE 4X4 MDS 

HADAMARD MATRICES IN 4  

     In the following of this paper, we will find all 

44 MDS Hadamard matrices in 42
 to choose 

the best involutory matrix for designing the 64-bit 

diffusion layer by the proposed model. 

A. Equivalence of the Hadamard matrices 

     In order to classify the Hadamard matrices, we 

consider an following equivalent relation: 

Definition 4. Given 2 kk Hadamard 

matrices H=had(h0,h1,…,hk-1) and H’=had(
' ' '

0 1 1, ,..., kh h h 
 ), then it is said that H and H’ are 

equivalent relation if there exist a permutation 

  of k elements such that  
'

i i
h h


 . Denoted by 

HH’. 

To classify the MDS Hadamard matrices by 

our criteria, we use the following properties: 

Fact 3. Given two equivalent Hadamard 

matrices HH’. Then, H and H’ have the same the 

number of branch, fixed points, implement XOR 

count and involutory property. 

Thus, based on this property we can reduce 

the complexity of considering the number of 

Hadamard matrices by just consider the 

representative elements (arrange in order) in each 

permutation equivalent class because all elements 

in the same equivalent class have the same 

cryptography and implementation properties. 

B. Our results 

     We can perform an exhausted search for all 

possibility of  0 1 2 3, , ,a a a a in 42
, then using the 

algorithm described in [14] to check the MDS 

property for all matrices. The number of matrices 

need to check is 2
16

. However, by the equivalent 

correlation we just consider all the representative 

elements implies that the complexity will be 

reduced. The experiment results show that among 

22680 MDS matrices (945 representatives) there 

are 1512 involutory matrices (63 representatives), 

i.e, 4-tuple  0 1 2 3, , ,a a a a arranged satisfying 

0 3

1i

i

a
 

 . After combining with the TranCells 

transformation to obtain the 64-bit diffusion layers 

as our proposed model, we calculate the number 

of fixed points of all diffusion layers. In detail, 

there are 21168 (number of remains which does 

not have involutory property) MDS matrices 

which generate the diffusion layer with none of 

fixed points. For hardware evaluations, in [9] 

the authors also evaluated the hardware 

implement ability of the involutory MDS 

Hadamard matrices based on the hardware 

implement basic for each multiplication of 

elements in the finite field. In 42
, authors give 

the evaluation of necessary XOR count to multiply 

by 16 elements in 42
 when using polynomial 

generator as a primitive polynomial 

  4 1f x x x   . The XOR count in Table 1: 

TABLE 1. XOR COUNTS WHEN MULTIPLY BY EACH ELEMENTS IN 42

Elements 0 1 2 3 4 5 6 7 8 9 A B C D E F 

[9] 0 0 1 5 2 6 5 9 3 1 8 6 5 3 8 6 

This paper 0 0 1 4 2 4 5 6 3 1 5 4 4 2 5 4 
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Actually, the evaluation in [9] is not tight 

due to the repeat of sum of some variables but 

in our evaluation, we have modified. For 

example, the multiplication 7Y X   in 42
 can 

be done as follow: 

0 0 2 3 1 0 1 2

2 0 1 2 3 3 1 2 3

7

,

,

Y X

y x x x y x x x

y x x x x y x x x

  

     


      

    (1) 

where  3 2 1 0|| || || ,Y y y y y  3 2 1 0|| || || ,X x x x x   

2,i iy x  . If we construct hardware circle for 

each Boolean function in the system equations (1) 

then the required XOR counts is 9 (as in the 

evaluation in [9]). Actually, we have: 

2 3 0 1

0 0 1 2

2 3 1

,

(1) ,

,

u x x v x x

y x u y v x

y v u y x u

   


    
      

This system requires only 6 XOR counts. 

Doing the same with other components, we get the 

XOR count evaluation as in Table 2. 

For all 22680 MDS Hadamard matrices in 

42
,  we evaluate the necessary XOR count for 

both 44 MDS matrix and its inverse. The 

evaluation is total number of XOR operators when 

multiply one column vector with 4 nibbles by one 

row of matrix   40 1 2 3 2
, , , , ,0 3iHad a a a a a i    

and one row of its inverse.  

Table 2 results in ascending necessary XOR 

counts for hardware implementation of all these 

44 MDS Hadamard matrices, where “+” denote 

the involutory matrices and “-” for non-

involutory matrices. Therefore, among 22680 

involutory MDS Hadamard matrices 

 1,4,9,13Had is a representative of class 1 in 

Table 2 has the best implementation with 

necessary cryptographic properties. 

C. Analyse the Had (1,4,9,13) matrix 

In this section, we evaluate total necessary 

XOR counts with involutory MDS Hadamard 

matrix Had (1,4,9,13). The evaluation is total 

number of XOR operators when multiply one 

column vector with 4 nibbles by one row of matrix 

Had (1,4,9,13), result of this transformation is a 4 

bits string, denoted by R. So, R mapping from 16

2
 

to 4

2
. Indeed, we consider this transformation R 

because all rows in Hadamard matrix have the 

same elements. In order to multiply one column 

vector with 4 elements by the Hadamard matrix, 

we just need to use a multiplication diagram and 

permute input nibbles then we get the output 

column vector. This is advantages of the 

Hadamard matrix. By this analysis, we can need 

only a multiplication diagram based on 

transformation R to multiply two 44 matrices in 

full MixColumns transformation. 

  TABLE 2. CLASSIFICATION OF  22680 MDS HADAMARD MATRICES OF SIZE 44 IN   

WITH GENERAL POLYNOMIAL  f(x)=x4x1 

Class 
XOR 

count 
Involution 

No. of 

fixed 

points 

No. of MDS 

Hadamard 

matrices 

Class 
XOR 

count 

Involuti

-on 

No. of 

fixed 

points 

No. of MDS 

Hadamard 

matrices 

1 17 + 232 24 11 40 - 1 144 

2 18 + 232 24 12 41 - 1 192 

3 20 + 232 24 13 42 - 1 192 

4 21 + 232 96 14 43 - 1 240 

5 22 + 232 192 15 44 - 1 480 

6 23 + 232 120 16 45 - 1 816 

7 24 + 232 120 17 46 - 1 1104 

8 [25…31] + 232 912 18 47 - 1 1104 

9 37 - 1 48 19 48 - 1 1728 

10 38 - 1 96 20 [49…64] - 1 15024 

Total: 22680 

 

 

 

 

 

42
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First, we consider the following illustrative 

multiplication diagram for 4, 9 and 13 as follow: 

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0

b3 b2 b1 b0

x4 x9 x13

Figure 2. The multiplication for 4, 9 and 13 in 42
  

with generator polynomial 
4 1x x   

Therefore, the transformation of matrix Had 

(1,4,9,13) for an input column 16

2( , , , )a b c d  , 

where    3 2 1 0 3 2 1 0, , , ,..., , , ,a a a a a d d d d d   has 

respectively output 4

2 ,x  

1 4 9 13x a b c d         as the following 

illustration: 

c3 c2 c1 c0b3 b2 b1 b0a3 a2 a1 a0 d3 d2 d1 d0

x3 x2 x1 x0

x9 x13x4

clock 1

clock 2

clock 3

clock 4

Figure 3. Hardware design illustration  

of R transformation 

Thus, we need 17 XOR counts and 4 clock 

cycle to implement R transformation. Moreover, 

in order to perform a full MixColumns 

transformation based on the multiplication 

diagram on Figure 3, we need to apply this 

diagram 16 times with also 17 XOR count but the 

clock cycle will be  164 = 64. However, we are 

interested in the limited source devices in this 

design. So, the necessary XOR count should be 

more interested. Since the matrix is involutory 

MDS Hadamard then the diagram on Figure 3 can 

be used for both encryption and decryption. To 

compare the complexity with real designs, we also 

construct the multiplication diagram for R’ and 

(R’)
-1

 when multiply companion matrix 

Companion (2,2,1,4) by its inverse which used in 

the MixColumnSerial transformation of 

lightweight block cipher LED has the same as an 

column vector [4] (Table 3, 1 XOR count value  

2,65 GE). 

TABLE 3. COMPLEXITY COMPARISON IN 

HARDWARE IMPLEMENTATION OF TWO MODEL 

Transformation 
XOR 

count 

Equi. 

GE 

value 

Clock 

cycle 

MixColumns based on 

Had(1,4,9,13) 
17 45,05 64 

MixColumnSerials in 

LED 
14 37,10 48 

InvMixColumnSerials in 

LED 
18 47,70 64 

V. CONCLUSION 

In this paper, we have proposed and evaluated 

the involutory diffusion layer based on the 

Hadamard matrices in AES-like block ciphers. 

The experiment results show that which ciphers 

have the diffusion layer using involutory MDS 

Hadamard matrices will be advantage in 

implementation and secured against differential 

and linear cryptanalysis as in the AES cipher 

model by the wide trail strategy. However, they 

will hide some weakness due to the diffusion layer 

has many fixed points.   
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