Some results on new statistical randomness
tests based on length of runs

Abstract— Random Sequences and random
numbers play a very important role in
cryptography. In symmetric cryptography

primitives, a secret key is the most important
component to ensure their security. While
cryptographic protocols or digital signature
schemes are also strongly dependent on random
values. In addition, one of the criteria for
evaluating security for cryptographic primitives
such as block cipher, hash function... is to
evaluate the output randomness. Therefore, the
assessment of randomness according to statistical
tests is really important for measuring the
security of cryptographic algorithms. In this
paper, we present some research results on
randomness tests based on the length of runs
proposed by A. Doganaksoy et al in 2015. First,
we show that some probability values for tests
based on lengths 1 and 2 are inaccurate and
suggest editing. Secondly, we have given and
demonstrated for the general case the runs of
any length k. Finally, we built a randomness
testing tool and applied evaluations to true
random sources.

Tom tit— Cac diy va cic s6 ngiu nhién dong
mdt vai trd rit quan trong trong mat mi. Trong
cac nguyén thuy mit ma ddi xing, khoa bi mat
chinh 13 thanh phin quan trong nhit nhim dam
bdo tinh an toan cuia ching. Trong khi dd, cac
giao thirc mat mi hay lwge do chir ky sb ciing phu
thudc nhiéu vao cac gia tri ngiu nhién. Ngoai ra,
mjt trong cic tiéu chi dé danh gia tinh an toan
cho cic nguyén thuy mat ma nhr mi khoi, ham
biam... 12 danh gia tinh ngiu nhién diu ra. Do dé,
viéc danh gia tinh ngiu nhién theo cic kiém tra
thong ké thuc sw rat quan trong ddi véi viée danh
gia tinh an toan cia cac thuit toan mat _ma.
Trong bai bao nay, ching toi trinh bay mot 50 két
qua nghién ciru vé cac tiéu chuén k1em tra loat
dua trén dd dai di dwoe dé xudt béi A.
Doganaksoy cung dong sy nam 2015. Dau tién,
chiing toi chi ra rang mjt sb gia tri xac suit cho
cac loat do dai 1 va 2 la chwa chinh xac va dé xuit
chinh sira. Sau dd, ching t6i da dwa ra va chirng
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minh cho truwong hop téng quat cac loat cé dd dai
k bat ky. Cudi cung, ching tbi di xiy dung mot
cong cu kiém tra tinh ngiu nhién dya trén d9 dai
cac loat va ap dung danh gia cho cic ngudn ngiu
nhién thue su.
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I. INTRODUCTION

Statistical randomness tests play an
important role in assessing the security of
cryptographic algorithms. There have been
many independently statistical randomness tests
in the literature. Knuth [1] presented a number
of statistical tests including frequency check,
serial test, poker test, series test (run)... Another
test suite is the DIEHARD tests [2] including 18
statistical tests. In addition, there is a Crypt-XS
test suite [3] proposed by the Information
Security Research Center of Queensland
University of Technology. Finally, the currently
widely used test suite is the SP 800-22
statistical test suite [4] originally developed by
NIST with 16 tests but then shortened to 15
tests (omitted Lempel-Ziv complexity test).

In addition, there are a number of
randomness testing standards that are not
presented in test suites or independently used.
In 1992 Maurer proposed a universal statistical
test for random bit generators. In 2004,
Hernandez et al. proposed a new test called the
Strict Avalanche Criterion (SAC)... And most
recently, Doganaksoy et al. [5] proposed three
new randomness tests based on the length of
runs in 2015.

Our Contributions. In this paper, we
present some new results on randomness tests
based on the length of runs. Specifically, we
have given and demonstrated in detail the
probability calculation formula for the general
case of a binary sequence of length » having
exactly /[, runs of length %k, with 1<k <n.
Furthermore, we have shown that some
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probability values given in [5] are inaccurate,
and this may lead to a mistake in assessing the
randomness of the input sequences, thereby
giving to incorrect assertions about the security
of cryptographic algorithms. Finally, we built a
tool that quickly, accurately and efficiently
checks a data file that is random or not using
three new randomness tests based on length
of runs.

Construction. The rest of the paper
includes: Part II presents three postulates on
randomness given by Golomb [6] as well as
some tests related to runs. The new results of
research on tests based on length of run are
presented in section III. In section IV, we
present a randomness assessment tool using 3
new tests. Finally, the conclusions and future
research directions are presented in Section V.

II. PRELIMINARIES

In this section, we present the three
propositions of randomness given by Golomb in
[6]. This is one of the bases for assessing the
randomness of a sequence. Then, we outlined
some of the testing standards related to the runs
as well as the reasons for studying new
standards based on length of runs.

A. Golomb’s Randomness Postulates

Let S=5,,5,"s
sequence periodic with n or a finite sequence of
length n. A run is defined as an uninterrupted
maximal sequence of identical bits. Runs of 0’s
are called gap; runs of 1’s are called block. R1,
R2, and R3 are Golomb’s randomness
postulates which are given as follows:

e (R1) In a period of S, the number of 1’s
should differ from the number of 0’s by at
most 1. In other words, the sequence should
be balanced.

e (R2) In a period of S, at least half of the
total number of runs of 0’s or 1’s should
have length one, at least onefourth should
have length 2, at least one-eighth should
have length 3, and the like. Moreover, for
each of these lengths, there should be
(almost) equally many gaps and blocks.

e (R3) The autocorrelation function C(t)

-~ be an infnite binary

n—17

should be two-valued. That is, for some
integer K and for all t =0,1,---,;n—1,

n—l 1s7+514 . n,t:O
(*) T lK1<t<n-1.

In this paper, we mainly focus on the
first and second postulates, and the last one is
not a matter of concern.

B. Some basic run tests

Golomb's second postulate is on the number
of runs in a sequence. Tests which consider the
number of runs, are called run tests and are also
included in many test suites such as Knuth [1],
DIEHARD [2], TestUO1 [7], NIST [4]. Since
calculating the expected number of fixed-length
runs in a random sequence is a difficult task
(especially when the length of runs is large),
most tests only consider the total number of
runs and do not consider the number of runs of
different lengths as follows:

Run tests in Knuth (1] and DIEHARD [2]
test suites:

These test suites define the run test on
random numbers. They define runs as runs up
and runs down in a sequence. For example,
consider a sequence of length 10,

S, =138742975349 . Runs are indicated by
putting a vertical line between s

b

when

s, >s . Therefore, runs of the sequence

138742975349 can be seen as
|138|7|4|29|7|5|349|.In other words, the run test

examines the length of monotone subsequences.
Run test in TestUO1 7] test suite:

This test suite defines runs and gap tests for
checking the randomness of long binary
sequences of length n. This test calculates the
runs of 1 and O until the total number of runs is
2r . Next, number of runs 1 and 0 correspond to
each length of j;=12---,k is calculated and
recorded. Finally, applying x? test on these
values. Test of the longest run of one also be
defined for subsequences of length m that
obtained from the original binary sequence of
length n.

Run test in NIST |4] test suite:

NIST test suite is widely used to checks the
randomness of pseudorandom sequences. In
the suite, 2 of 15 tests are variations of run
tests. They are called run test and longest run
of ones in a block test. The first one deals with
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the total number of runs in a sequence. It
calculates the total number of runs in a
sequence and determines whether it is
consistent with the expected number of runs,
which is supposed to be close to n/2 in a

sequence or not. The second one determines
whether the longest run of ones in the
sequence is consistent with the length of the
longest runs of ones which is in a random
sequence. In NIST test suite the reference
distributions for the run tests are a X2
distribution.

III. TESTS BASED ON LENGTH OF RUNS

In this section, we present the theoretical and
practical basis for calculating the number of
sequences with a certain number of runs of
specific lengths. Then we calculate the expected
probability from the total number of sequences
of length n. Calculating the exact probabilities
of the number of runs of length k£ (for 1 <k <n)
in a sequence allows us to define new runs tests.
However, when the runs are of great length, the
computational complexity increases
exponentially so it is not feasible to accurately
calculate probability values.

A. Notations

Let’s denote the total number of runs and
number of runs of lengths one, two,..., and k as

r,7,7, ... and 7, ans we use samples of these

variables r,[ .1

1,00 for 1< k < n,respectively.

We denote the probability of randomly chosen
binary sequence with 7 runs by Pr(r, =r). In

the same way, Pr(r, =1 ) is the probability of
randomly chosen binary sequence with / runs
oflength kfor 1 <k <n.

We denote S,S,,---,5 be the blocks of a

long sequence or outputs of block ciphers and
hash functions.

Lastly, let denote L, L, , ... and L be the set of

number of runs of lengths one, two, ... and & in
the sequences for 1<k < n, respectively. That

is L :{Zj,lf,u-,l;"} and !/ corresponds the

number of runs of length i in the j sequence.

12 862.CS (08) 2018

B. Evaluation of Probabilities

In the calculations of probabilities we use the
following Propositions:

Proposition 1 (Fact 2, [5]) The number of
positive integer solutions of
n—1

4z, 4+ =nnel’ is[ s
r_

Proposition 2 (Fact 1, [5]) The number of

nonnegative integer solutions of
o in+r—1
T+, +tr =nncZ 18 1
r—

Moreover, in order to illustrate the runs of a
sequence we use the equation

z, +z, +--+x =n for a sequence with length
n and having r runs. z (i = 1,2,~~~,r> represents

the number of bits in /™. An important property
of this illustration is that it gives no information
about content of =z ,s ; that is z_ can be a run of
0’s or 1’s. Therefore, each positive integer
solution of the equation z 4z, +--+z =n
corresponds to two sequences: one starts with 1

and the other starts with 0. Thus, the number of
sequences with length » and having exactly r

runs is 2

n—1 .-
. 1} by Proposition 1.

Example 1.

Let S =00101010011111001100011101010100
be a binary sequence of length 32 and having 19
runs. Then,

z 4z, +Fz, =32,

19

2
0101010011111001100011101 01 0 100 ,
L I B

e P Im T
12 T3 Ty Ty Tig Typ Tig Ty

r =2z, =Lz, =Lz, =Lz =1

r, =Lz =2z, =5z =21, 6 =2
T, =37, =3, =Ly, =Ly, =1
z =Lz =lz, =1z, =

Now, we consider the case that a sequence of
length n and having exactly total » runs, I of
which are runs of length 1, [, of which are runs
of length 2, ...,

We have the following Theorem:
Theorem 1. The probability of randomly

chosen binary sequence S =s,s,,---,s, with

I, of which are runs of length £.

length n, having total of » runs, [ of which are
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runs of length 1, I, of which are runs of length
2, ..., I of which are runs of length £, is
Pr(rL:r,rl:l r:lk):

n—kr+(k—1)ll+(k—2)12+...+2lk_2+lk_1—1X
r—1 —l,—.—1 —1

r||r—1 r—1l ===l

] !

X 2n—1

Proof. We can illustrate the sequence as

follow:
xl+x2 +~~~+xT =n.
Let us first assume that the last [ are of
length 1 and I, are of length 2, ..., and [ are of

length k. The rest are of at least length (£ +1).

Consider,
xr—lﬁ—l = = r—1 = xr = 17
v T T = 2,
e T L k.

Substituting these into the above equation,
we have:
T T, + +’T —(l+l 4t
A L 4

————
thtk+o ko 2424241414+ 1=,
=3 T +z,++z n—1 —2 —...—kl

Note that, z, > k +1, for
1<i<r—(L+4+..+1).

Set y, =z, — (k+1) for
1<i<r—(l +1,+..+1), and substituting into
the above equation, we have:
(v, +k+1)+(y, +h+1)+
. +(yr7(llﬂﬁ_ﬂ) iy +1) 20—~ k]
Sy ty, +oet LAy
=+ 2 o k) = (k1) [r = (4 ]+ )]
=n—(k+1)r+k +(k=1)L, +...+1,.

k?

(b + ) = 1 2 k"

Applying the Proposition 2, number of

nonnegative solution of this equation is:
n—hkr+(k=1)L +(k—2), +...+]_ —1
r—l =l ——1 —1 '

Therefore, the number of all binary
sequences of length n with conditions stated
above is:
) n—kr+ (k=11 +(k=2), +..+1_ —1

S R R A

y r||r—1, r—=l =l —..—1 ‘
ll 12 lk

Hence, the probability of a randomly chosen
sequence with length n, having total of 7 runs,

of which are runs of length 1, [, of which are

runs of length 2, ..., | of which are runs of
length £, is:
Pr(rt =rn=1,..,

T, :lk)
_n—br (k=) (k=2)l 2L, ] -

r—1l =l —..—1 -1
r|lr—1
! 12

2n—1

Pl =l =1
l

Now, we evaluate the number of sequences

with length n and [ runs of length &, without

k

X O

depending on the other variables. We have the
following corollary:

Corollary 1. Let N, (i) denote the number

of sequences with length » and having exactly [,

runs of length k. Clearly, we have maximum
[n/ k| runs of length k. Otherwise, sequence

length exceeds n. Then, for i, = 0,1,-,|n / k|,
P o kr+(k i+ 41
( ) 120 20; [ L, l2_"‘_lk-_1

|

It implies the probabilities

N, (zk)
271 :
We use the Algorithm 1 in order to evaluate
the probabilities Pr(r, =1,).

Pr(rk = lk.) =
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Algorithm 1: Evaluate Pr(r, =1 ) for
I = 071,.~7{n/1<;]
Lo 0l — 0,1 0,0 — LN, (1) <0,
while | <|n/k| do

;A'/ilﬂe l, < {n/Q] do
while [ <n do
while r<mn do
1

Pl =l =l —1
r—@—m—@l]

n—mw{k—gg+m+al—1

r—r-+1
end while
I —1 +1
end while
L1 +1
end while

lk — lk +1
end while
return N B

Computational  Complexity: Let  the
complexity of computing N, (i) be (k) then
the complexity of probability searching
algorithm for runs of length k& 1is about
O(nk“T (k)) .
After evaluating all probability values, we
divide these into 5 subintervals as in [5].

Case k=1.

Choose n =128, we have calculated all

probability values and divide into subintervals
as follow

Bozl = i:Pr1 (7"1 = 11)’ Box2 = z“: Pr, (7‘1 =1 ),

4,=0 1, =28

Bozr3 = i Pr, (7“1 = ll)7 Boxd = i Pr, (7“1 = ll),
L, =31 1,=35
128

Boxb = Z Pr, (7"1 = 11)'

1,=39
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Then, we get Table 1 for probability
subintervals.

Table 1. Interval and probability values for runs of length
one test for 128-bit blocks

Interval Probability
Box 1 0-27 0.2191945278
Box 2 28-31 0.2304573984
Box 3 32-34 0.1843489091
Box 4 35-38 0.1945435197
Box 5 39-128 0.1714556450
Total 1

Remark 1: In the Table 1, we have use the
intervals given in [5], however the calculated
probabilities of Box 4 and Box 5 are not match
with the probabilities given in [5]. After
retesting, we find that the authors in [5] give
correct intervals but wrong probabilities. The
correct probabilities are as in Table 1.
Moreover, the probabilities given in [5] are
belong to the intervals 35-40, and 41-128,
that can not belong to the intervals 35-38
and 39-128.

Similarly, we can calculate probabilitiy
intervals for sequences with different lengths.
The subinterval probabilities for runs of length
1 can be seen in Table 2.

Table 2. Interval and probability values for runs of length
one test for 64, 128, 256, and 512-bit blocks

n=64 n=128
eV | probability | Interval | Probability
Box 0.19008234 0.21919452
1 0-12 44 0-27 78
Box 0.23887746 0.23045739
) 13-15 37 28-31 34
Box 0.17456037 0.18434890
3 16-17 41 32-34 91
Box 0.21147040 0.19454351
4 18-20 14 35-38 97
Box 0.18500941 0.17145564
p 21-64 64 39-128 50
Total 1 1
n =256 n=512
Inteirva Probability | Interval | Probability
Box 0.18725584 0.19356638
1 0-56 09 0-117 36
Box 0.18928091 0.21863011
5 57-61 85 118-125 47
Box 0.21985945 0.21707667
3 62-66 18 126-132 90
Box 0.21877592 0.19951554
4 67-72 27 133-140 9”0
Box 0.18482786 0.17121127
p 73-256 61 141-512 40
Total 1 1
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Remark 2: In [5], the authors give the
intervals and the corresponding probabilities for
runs of length 1. However, we found that some
value in [5] are incorrect! For n = 64, if we use
the intervals in [5], then the correct probabilities

should be:

Table 2.1. Interval and probability values for runs of
length 1 test for 64-bit blocks

n =64
Interval Probability
Box 1 0-13 0.2613425337
Box2 | 14-16 | 0.2561417553
Box3 | 17-18 | 0.1659176815
Box 4 | 19-21 | 0.1812433426
Box 5 | 22-64 | 0.1353546869
Total 1

These probabilities are not match with the
probabilities given in [5]. Moreover, these
intervals are not equivalent. Therefore, we have
re-divide into new intervals and recalculate
probabilities in new intervals. Interestingly,
these probability values approximate the values
given in [5] but belong to other intervals.

Similar to the case »n = 128, intervals and the
probability values given in [5] is not match.
Specifically, if we take the given intervals in
[5], we have recalculated the probabilities
exactly as shown in Table 1 and Table 2. If we

Box 0.24528775 0.26659050
4 9-10 67 17-19 46
Box 0.18330972 0.18246401
p 11-32 55 20-64 1
Total 0.99999999 0.99999999
o 99 99
n =256 n=>512
Interval | Probability | Interval | Probability
Box 0.19257931 0.18893841
1 0-27 49 0-57 32
Box 0.19405196 0.17879497
) 28-30 29 58-61 30
Box 0.22292350 0.21049627
3 31-33 33 62-65 69
Box 0.18785330 0.22561551
4 34-36 79 66-70 70
Box 0.20259190 0.19615481
p 37-128 51 71-256 50
Total 1.00000000 1.00000000
01 01

In case k=3, we have calculated all
probability values and divide into subintervals
as follow:

Table 4. Interval and probability values for runs of length
three test for 64, 128, 256, and 512-bit blocks

use the intervals as follows, the probability
values coincide with the values given in [5].

Table 2.2. Interval and probability values for runs of
length 1 test for 128-bit blocks

n =128
Interval Probability
Box 1 0-26 | 0.1731718548
Box2 | 27-30 | 0.2142651725
Box3 | 31-33 | 0.1869770204
Box 4 | 34-37 | 0.2133929800
Box 5 | 38-128 | 0.2121929722
Total 0.9999999999

In case k=2,

we have calculated all

probability values and divide into subintervals

as follow:

Table 3. Interval and probability values for runs of length
two test for 64, 128, 256, and 512-bit blocks

n=064 n=128

Interval | Probability | Interval | Probability
Box 0-2 0.20782508 0-5 0.16320900

1 99 84
Box 3 0.20431981 6.7 0.27450079

2 09 ) 90
Box 4 0.21673204 3 0.15485472

3 08 29
Box 0.28324547 0.24505901

4 5-6 60 9-10 18
Box 0.08787758 0.16237645

p 7-21 25 11-42 79
Total 1.00000000 1.00000000

01 00

n=1256 n=>512
I“z” Probability I“t‘;”a Probability
B;)x 0-13 0.248134758 0-27 0.189252605
B;)x 14-15 0.2071364715 28-30 0.2014;97107
B;,)X 16-17 0.2137143768 31-33 0.231 281647
B:x 1820 0.222 1944506 3436 0. 190%06612
B;)x 20-85 0.108%12250 37-170 0.187162027
1.000000000 1.000000000
Total 0 0

n=064 n=128
Interval | Probability | Interval | Probability
B?x 0-5 0.161&4454 0-12 0.16?)(;7580
B;x 6-7 0.26(;996400 13-14 0.1 74;(())7560
B;)x 3 0.149;(4)‘9396 15-16 0.209;719407
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Remark 3: In the case of n =512 we used
Magma software to divide the intervals and
calculate the probability values because it takes
quite a long time to run in C ++ language. The
calculation time on Magma for this case is
about 5000 seconds.

C. Tests Descriptions

After calculating the probabilities, we begin
to build a new test based on the number of runs
of length k. Specifically, to test a sequence of
N =nxm bits, where n is the block size we
choose. Or we consider m outputs of a
cryptographic primitive (a block cipher or a
hash function) that have output block size is n-
bit. First, we'll count the number of runs of
length £ of each sequence in m blocks, and
increases the count value of the corresponding
sub-interval to 1. After calculating, we record
the counting values of each sub-interval,

denoted by F ,F, respectively. We use the
approach as in [8], using x? test to evaluate the

randomness of the sequence.
Consider:

i 2"

5 (F m Pr. )
,Z; mPr,
Lastly p-value is calculated according to the
given values:
5—1 x_2

)

2
By comparing the produced p-value with the

level of significance o, we can conclude about

the randomness of the input sequence.

Note that for y* test, we require mPr >5

Thus,

the new tests can be applied for short sequences

oflength N = nxm bit for m >25.

In addition, counting the total runs numbers and

runs numbers with length k of a sequence by

definition is difficult. Therefore, we use the

concept of “derivative” of a sequence.
Definition 1 (Remark 11, [5]) (derivative of

a sequence) Let S=s,s,,s , be a binary

p — value = igamc

therefore for Pr ~ 0.2 we need m > 25.

n—1
sequence of length n, the derivative of S,
denoted by AS = As ,As,---,As  is defined as
follows

if i=0,1-,n—2,

AS — SzEBSHl
' if i=n-1.

! 1

16 S62.CS (08) 2018

Also we use a variation of AS, denoted by
AS" of length n+1 by adding I’s at the
beginning the sequence AS. The variation of
derivative is an important part of new defned
run tests, since the number of runs of different
length is determined by this sequence.

Let S=s,s,,s , be a binary sequence

and derivative of §'is AS = As,As,---,As

n—1"°

Then, AS’=As!,As/,---,As’ is defined as
follows

, Qs if =120,
A=l i izo

It is easy to prove that the total runs number
of a sequence is the weight of the derivative of
that sequence, and the runs number with the
length k in a given sequence S is the number of
samples 10---01 overlaps in AS".

(k1)

Algorithm 2 presents the pseudocode of the
test based on the number of runs of length £:

Algorithm 2: Test based on the number of

8,8, )L, —{11 B, z;"}

kR

runs of length & (S

AS ASZO,ASM, 7A‘91l,n
i 0,0, 0
while j <n -k do
temp = As ><2k+As x 2P L As’ x4 A

0,542
if temp =2F +1 then
l; — l,i +1
end if
1—i+1
end while
Applying x?test for L,
return p-value.

IV. SOME EXPERIMENTAL RESULTS

We have developed a randomness test
program using tests based on runs of lengths 1,
2 and 3. The program interface is shown in
Figure 1. Specifically, we have tested 4 files
true random: samplel.rng, sample2.rng,
sample3.rng, sample4.rng (these true random
files are actually 32 KB in size, that is, bits of
N =32x1024x8  length, downloaded at
http://www.rngresearch.com/download/)  with
the following cases n = 64, 128, 256 and 512.
The results of all 4 files have passed 3 new runs

i, 7+k

0
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tests with » = 64, 128, 256 and 512.
Specifically, for the case n = 64, select the
significance level o =0.01, the file to be
checked is samplel.rng, we get the result as
shown in Figure 1:

uy' Chuong trinh kiém tra cac tifu chudn Run mai - a *

Chon kich o8 mlm | 64 Chon mibe f mghia alpha |0.01

Open E:\ Working | Work 2017\ Chuyen de 01! samplel.mg
Pevalue
[ Tiéu chuin Ranl Pass 02534106320 5
Kifm tra
[ Tiéu chuin Run2 Paws 05320563030
Déng
] Tiéu chiskin Run3 Pins 05783667364

Fig 1. The program interface of 3 new runs tests for
n=64, a = 0.01 for file samplel.rng

Similarly, we perform tests for the cases
n =128,256,512and for files sample2.rng,
sample3.rng, sample4.rng. The results are
summarized in the following Table 5:

Table 5. Results of 3 new runs tests for
true random files

Runs of

length 0.8992 0.231489 | 0.571770 | 0.779767
93

2 test

Runs of

length 0.5063 0.814081 | 0.011770 | 0.591287
32

3 test

Case n =512

sample | sample2.r | sample3.r | sampled.r
l.rng ng ng ng

Runs of

length 0'22505 0.292832 | 0.480338 | 0.861397

1 test

Runs of

length 0.2522 0.821268 | 0.105730 | 0.726579
12

2 test

Runs of 08111

length '72 0.471682 | 0.110607 | 0.834620

3 test

Case n =64
sample | sample2.r | sample3.r | sampled.r
l.rng ng ng ng
Runs of
length 0'276154 0.177239 | 0.249560 | 0.857602
1 test
Runs of
length | 22320 | 0.054239 | 0.500319 | 0.219101
56
2 test
Runs of
length | %3785 | 0.832500 | 0.445590 | 0941008
69
3 test
Case n =128
sample | sample2.r | sample3.r | sampled.r
l.rmng ng ng ng
Runs of
length 0'(;8897 0.601941 | 0.251491 | 0.941470
1 test
Runs of
length 0.1695 0.435659 | 0.645554 | 0.416198
05
2 test
Runs of
length 0.2641 0.893517 | 0.393173 | 0.978088
85
3 test
Case n =256
sample | sample2.r | sample3.r | sampled.r
l.rng ng ng ng
Runs of
length 0'24;09 0.308548 | 0.272620 | 0.422990
1 test

V. CONCLUSION

In this paper, we present some results on new
randomness tests based on length of run
proposed by A. Doganaksoy et al. [5]. First, we
have given and demonstrated in detail the
probability calculation formula for runs of
length k, with 1 <k < n. Second, we show that
some probability values for runs lengths 1 and 2
are inaccurate and suggest corrections. Third,
we have built a randomness testing algorithm
based on the length of runs. Finally, we
programmed to build an accurate and efficient
tool to test randomness based on the length of
runs and apply evaluations to true random
sources.

Further research directions: Note that the
criteria presented in this paper can only be used
to evaluate sequences of lengths greater than
512 bits, so it is not applicable to assess
randomness output for cryptographic primitives
such as block ciphers or hash functions. To be
able to evaluate for sequences of length less
than or equal to 512 bits, we need to recalculate
the probability distribution for blocks of smaller
lengths and divide the probability interval
accordingly. This is an open problem that needs
further research in the future. In addition, the
evaluation of probability values for series with a
length greater than or equal to 4 and the
correlation between these tests also need further
consideration and research.
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