
 Số 2.CS (08) 2018 10

Linh Hoang Dinh

Abstract— Random Sequences and random
numbers play a very important role in
cryptography. In symmetric cryptography
primitives, a secret key is the most important
component to ensure their security. While
cryptographic protocols or digital signature
schemes are also strongly dependent on random
values. In addition, one of the criteria for
evaluating security for cryptographic primitives
such as block cipher, hash function... is to
evaluate the output randomness. Therefore, the
assessment of randomness according to statistical
tests is really important for measuring the
security of cryptographic algorithms. In this
paper, we present some research results on
randomness tests based on the length of runs
proposed by A. Doğanaksoy et al in 2015. First,
we show that some probability values for tests
based on lengths 1 and 2 are inaccurate and
suggest editing. Secondly, we have given and
demonstrated for the general case the runs of
any length k. Finally, we built a randomness
testing tool and applied evaluations to true
random sources.

Tóm tắt— Các dãy và các số ngẫu nhiên đóng
một vai trò rất quan trọng trong mật mã. Trong
các nguyên thuỷ mật mã đối xứng, khoá bí mật
chính là thành phần quan trọng nhất nhằm đảm
bảo tính an toàn của chúng. Trong khi đó, các
giao thức mật mã hay lược đồ chữ ký số cũng phụ
thuộc nhiều vào các giá trị ngẫu nhiên. Ngoài ra,
một trong các tiêu chí để đánh giá tính an toàn
cho các nguyên thuỷ mật mã như mã khối, hàm
băm… là đánh giá tính ngẫu nhiên đầu ra. Do đó,
việc đánh giá tính ngẫu nhiên theo các kiểm tra
thống kê thực sự rất quan trọng đối với việc đánh
giá tính an toàn của các thuật toán mật mã.
Trong bài báo này, chúng tôi trình bày một số kết
quả nghiên cứu về các tiêu chuẩn kiểm tra loạt
dựa trên độ dài đã được đề xuất bởi A.
Doğanaksoy cùng đồng sự năm 2015. Đầu tiên,
chúng tôi chỉ ra rằng một số giá trị xác suất cho
các loạt độ dài 1 và 2 là chưa chính xác và đề xuất
chỉnh sửa. Sau đó, chúng tôi đã đưa ra và chứng

This manuscript is received on December 1, 2018. It is

commented on December 6, 2018 and is accepted on
December 12, 2018 by the first reviewer. It is commented on
December 16, 2018 and is accepted on December 22, 2018
by the second reviewer.

minh cho trường hợp tổng quát các loạt có độ dài
k bất kỳ. Cuối cùng, chúng tôi đã xây dựng một
công cụ kiểm tra tính ngẫu nhiên dựa trên độ dài
các loạt và áp dụng đánh giá cho các nguồn ngẫu
nhiên thực sự.

Keywords— Randomness testing; Block
cipher; Hash function; Runs.

Từ khóa— Kiểm tra tính ngẫu nhiên; Mã
khối; Hàm băm; Loạt.

I. INTRODUCTION

Statistical randomness tests play an
important role in assessing the security of
cryptographic algorithms. There have been
many independently statistical randomness tests
in the literature. Knuth [1] presented a number
of statistical tests including frequency check,
serial test, poker test, series test (run)... Another
test suite is the DIEHARD tests [2] including 18
statistical tests. In addition, there is a Crypt-XS
test suite [3] proposed by the Information
Security Research Center of Queensland
University of Technology. Finally, the currently
widely used test suite is the SP 800-22
statistical test suite [4] originally developed by
NIST with 16 tests but then shortened to 15
tests (omitted Lempel-Ziv complexity test).

In addition, there are a number of
randomness testing standards that are not
presented in test suites or independently used.
In 1992 Maurer proposed a universal statistical
test for random bit generators. In 2004,
Hernandez et al. proposed a new test called the
Strict Avalanche Criterion (SAC)... And most
recently, Doğanaksoy et al. [5] proposed three
new randomness tests based on the length of
runs in 2015.

Our Contributions. In this paper, we
present some new results on randomness tests
based on the length of runs. Specifically, we
have given and demonstrated in detail the
probability calculation formula for the general
case of a binary sequence of length n having
exactly lk runs of length k, with 1 k n  .

Furthermore, we have shown that some

Some results on new statistical randomness
tests based on length of runs

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 2.CS (08) 2018 11

probability values given in [5] are inaccurate,
and this may lead to a mistake in assessing the
randomness of the input sequences, thereby
giving to incorrect assertions about the security
of cryptographic algorithms. Finally, we built a
tool that quickly, accurately and efficiently
checks a data file that is random or not using
three new randomness tests based on length
of runs.

Construction. The rest of the paper
includes: Part II presents three postulates on
randomness given by Golomb [6] as well as
some tests related to runs. The new results of
research on tests based on length of run are
presented in section III. In section IV, we
present a randomness assessment tool using 3
new tests. Finally, the conclusions and future
research directions are presented in Section V.

II. PRELIMINARIES

In this section, we present the three
propositions of randomness given by Golomb in
[6]. This is one of the bases for assessing the
randomness of a sequence. Then, we outlined
some of the testing standards related to the runs
as well as the reasons for studying new
standards based on length of runs.

A. Golomb’s Randomness Postulates

Let
0 1 1
, , , ,

n
S s s s


  

be an infnite binary

sequence periodic with n or a finite sequence of
length n. A run is defined as an uninterrupted
maximal sequence of identical bits. Runs of 0’s
are called gap; runs of 1’s are called block. R1,
R2, and R3 are Golomb’s randomness
postulates which are given as follows:

 (R1) In a period of S, the number of 1’s
should differ from the number of 0’s by at
most 1. In other words, the sequence should
be balanced.
 (R2) In a period of S, at least half of the
total number of runs of 0’s or 1’s should
have length one, at least onefourth should
have length 2, at least one-eighth should
have length 3, and the like. Moreover, for
each of these lengths, there should be
(almost) equally many gaps and blocks.
 (R3) The autocorrelation function  C t

should be two-valued. That is, for some
integer K and for all 0,1, , 1t n  ,

   
1

0

, 0
1

,1 1.
i i t

n s s

i

n t
C t

K t n


 



    
   



In this paper, we mainly focus on the
first and second postulates, and the last one is
not a matter of concern.

B. Some basic run tests

Golomb's second postulate is on the number
of runs in a sequence. Tests which consider the
number of runs, are called run tests and are also
included in many test suites such as Knuth [1],
DIEHARD [2], TestU01 [7], NIST [4]. Since
calculating the expected number of fixed-length
runs in a random sequence is a difficult task
(especially when the length of runs is large),
most tests only consider the total number of
runs and do not consider the number of runs of
different lengths as follows:

Run tests in Knuth [1] and DIEHARD [2]
test suites:

These test suites define the run test on
random numbers. They define runs as runs up
and runs down in a sequence. For example,
consider a sequence of length 10,

10
138742975349S  . Runs are indicated by

putting a vertical line between
j
s ’ when

1j j
s s


 . Therefore, runs of the sequence

138742975349 can be seen as
138 7 4 29 7 5 349 . In other words, the run test

examines the length of monotone subsequences.

Run test in TestU01 [7] test suite:

This test suite defines runs and gap tests for
checking the randomness of long binary
sequences of length n. This test calculates the
runs of 1 and 0 until the total number of runs is
2r . Next, number of runs 1 and 0 correspond to
each length of 1,2, ,j k  is calculated and

recorded. Finally, applying χ2 test on these
values. Test of the longest run of one also be
defined for subsequences of length m that
obtained from the original binary sequence of
length n.

Run test in NIST [4] test suite:

NIST test suite is widely used to checks the
randomness of pseudorandom sequences. In
the suite, 2 of 15 tests are variations of run
tests. They are called run test and longest run
of ones in a block test. The first one deals with

Journal of Science and Technology on Information Security

12 Số 2.CS (08) 2018

the total number of runs in a sequence. It
calculates the total number of runs in a
sequence and determines whether it is
consistent with the expected number of runs,
which is supposed to be close to / 2n in a

sequence or not. The second one determines
whether the longest run of ones in the
sequence is consistent with the length of the
longest runs of ones which is in a random
sequence. In NIST test suite the reference
distributions for the run tests are a χ2

distribution.

III. TESTS BASED ON LENGTH OF RUNS

In this section, we present the theoretical and
practical basis for calculating the number of
sequences with a certain number of runs of
specific lengths. Then we calculate the expected
probability from the total number of sequences
of length n. Calculating the exact probabilities
of the number of runs of length k (for 1 k n )

in a sequence allows us to define new runs tests.
However, when the runs are of great length, the
computational complexity increases
exponentially so it is not feasible to accurately
calculate probability values.

A. Notations

Let’s denote the total number of runs and
number of runs of lengths one, two,…, and k as

1 2
, , ,
t
r r r … and

k
r ans we use samples of these

variables
1 2

, , ,...,
k

r l l l for 1 ,k n  respectively.

We denote the probability of randomly chosen
binary sequence with r runs by  Pr

t
r r . In

the same way,  Pr
k k
r l is the probability of

randomly chosen binary sequence with
k
l runs

of length k for 1 k n  .

We denote
1 2
, , ,

m
S S S be the blocks of a

long sequence or outputs of block ciphers and
hash functions.

Lastly, let denote
1 2
,L L , … and

k
L be the set of

number of runs of lengths one, two, … and k in
the sequences for 1 k n  , respectively. That

is  1 2, , , m
i i i i
L l l l 

and j

i
l corresponds the

number of runs of length i in the j sequence.

B. Evaluation of Probabilities

In the calculations of probabilities we use the
following Propositions:

Proposition 1 (Fact 2, [5]) The number of
positive integer solutions of


1 2

,
r

x x x n n      is
1

1

n

r

        
.

Proposition 2 (Fact 1, [5]) The number of
nonnegative integer solutions of


1 2

,
r

x x x n n      is
1

1

n r

r

         
.

Moreover, in order to illustrate the runs of a
sequence we use the equation

1 2 r
x x x n    for a sequence with length

n and having r runs.  1,2, ,
i
x i r  represents

the number of bits in ith. An important property
of this illustration is that it gives no information
about content of ,

i
x s ; that is

i
x can be a run of

0’s or 1’s. Therefore, each positive integer

solution of the equation
1 2 r
x x x n   

corresponds to two sequences: one starts with 1
and the other starts with 0. Thus, the number of
sequences with length n and having exactly r

runs is
1

2
1

n

r

        
 by Proposition 1.

Example 1.
Let 00101010011111001100011101010100S 

be a binary sequence of length 32 and having 19
runs. Then,

1 2 19
32x x x    ,

             
1 2 4 6 7 8 9 11 12 14 16 18 193 5 10 13 15 17

00 1 0 1 0 1 00111110011000111 0 1 0 1 0 1 00
x x x x x x x x x x x x xx x x x x x

 ,

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

2, 1, 1, 1, 1,

1, 2, 5, 2, 2,

3, 3, 1, 1, 1,

1, 1, 1, 2.

x x x x x

x x x x x

x x x x x

x x x x

          
         

Now, we consider the case that a sequence of

length n and having exactly total r runs,
1
l of

which are runs of length 1,
2
l of which are runs

of length 2, …,
k
l of which are runs of length k.

We have the following Theorem:
Theorem 1. The probability of randomly

chosen binary sequence
1 2
, , ,

n
S s s s  with

length n, having total of r runs,
1
l of which are

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 2.CS (08) 2018 13

runs of length 1,
2
l of which are runs of length

2, …,
k
l of which are runs of length k, is

 
   

1 1

1 2 2 1

1 2

1 1 2 1

1 2

1

Pr , ,...,

1 2 ... 2 1

... 1

...
...

.
2

t k k

k k

k

k

k

n

r r r l r l

n kr k l k l l l

r l l l

r r l r l l l

l l l

 





   

                    
                                



Proof. We can illustrate the sequence as

follow:

1 2 r
x x x n    .

Let us first assume that the last
1
l are of

length 1 and
2
l are of length 2, …, and

k
l are of

length k. The rest are of at least length  1k  .

Consider,

1

1 2 1 1

1 2 1 2 1 1 2 1

1 1

1 1

... 1 ... 1 ...

1,

2,

...

.
k k k

r l r r

r l l r l r l

r l l l r l l l r l l l

x x x

x x x

x x x k
 

  

     

            

   

   

   







Substituting these into the above equation,
we have:

 

 

1 2

2 1

1 2

1 2 ...

1 2 1 2...

... 2 2 2 1 1 1 ,

2

k

k

k

r l l l

l l l

kr l l l

x x x

k k k n

x x x n l l kl

   

   

  

             

        



  
  



 Note that, 1,
i
x k  for

 1 2
1 ...

k
i r l l l      .

Set  1i i
y x k   for

 1 2
1 ...

k
i r l l l      , and substituting into

the above equation, we have:

   

  
 

     
   

1 2

1 2

1 2

1 2...

1 2 ...

1 2 1 2

1 2

1 1

1 2 ... ,

2 ... 1 ...

1 1

k

k

kr l l l

r l l l

k k

k

y k y k

y k n l l kl

y y y

n l l kl k r l l l

n k r kl k l l

   

   

     

       

   

             
       





Applying the Proposition 2, number of
nonnegative solution of this equation is:

   1 2 1

1 2

1 2 ... 1

... 1
k

k

n kr k l k l l

r l l l


                   
.

Therefore, the number of all binary
sequences of length n with conditions stated
above is:

   1 2 1

1 2

1 1 2 1

1 2

1 2 ... 1
2

... 1

...
... .

k

k

k

k

n kr k l k l l

r l l l

r r l r l l l

l l l





                   
                                 

Hence, the probability of a randomly chosen

sequence with length n, having total of r runs,
1
l

of which are runs of length 1,
2
l of which are

runs of length 2, …,
k
l of which are runs of

length k, is:

 
   

1 1

1 2 2 1

1 2

1 1 2 1

1 2

1

Pr , ,...,

1 2 ... 2 1

... 1

...
...

2

t k k

k k

k

k

k

n

r r r l r l

n kr k l k l l l

r l l l

r r l r l l l

l l l

 





  

                    
                                

 

Now, we evaluate the number of sequences

with length n and
k
l runs of length k, without

depending on the other variables. We have the
following corollary:

Corollary 1. Let  k k
N l denote the number

of sequences with length n and having exactly
k
l

runs of length k. Clearly, we have maximum
/n k 

  
 runs of length k. Otherwise, sequence

length exceeds n. Then, for 0,1, , /
k
l n k     ,

 
  

1 1

/ 1

1 1

0 0 1 1 2

1 1 1

1 2

1 ... 1
2

... 1

...
... .

k

n k n n
k

k k
l l r k

k

k

n kr k l l
N l

r l l l

r r l r l l

l l l



   


  



                 
                                

 

It implies the probabilities

 
 

Pr
2

k k

k k n

N l
r l  .

We use the Algorithm 1 in order to evaluate
the probabilities  Pr

k k
r l .

Journal of Science and Technology on Information Security

14 Số 2.CS (08) 2018

Algorithm 1: Evaluate  Pr
k k
r l for

0,1, , /
k
l n k    

 2 1
0, , 0, 0, 1, 0,

k k k
l l l r N l    

while /
k
l n k    

 do

 …
 while

2
/ 2l n    

 do

 while
1
l n do

 while r n do

   

  

1 1

1

/ 1

1 1

0 0 1 1 2

1 1 1

1 2

1

2
1 ... 1

... 1

...
...

k

k k k k n

n k n n
k

l l r k

k

k

N l N l

n kr k l l

r l l l

r r l r l l

l l l





   


  



  

                 
                                

 

 1r r 
 end while

1 1

1l l 

 end while

2 2

1l l 

 end while
 …

 1
k k
l l 

end while

return
k
N

Computational Complexity: Let the
complexity of computing  k k

N l be  k then

the complexity of probability searching
algorithm for runs of length k is about

   1kn k .

After evaluating all probability values, we
divide these into 5 subintervals as in [5].

Case 1k  .
Choose 128n  , we have calculated all

probability values and divide into subintervals
as follow

   

   

 

1 1

1 1

1

27 31

1 1 1 1 1 1
0 28

34 38

1 1 1 1 1 1
31 35

128

1 1 1
39

1 Pr , 2 Pr ,

3 Pr , 4 Pr ,

5 Pr .

l l

l l

l

Box r l Box r l

Box r l Box r l

Box r l

 

 



   

   

 

 

 



Then, we get Table 1 for probability
subintervals.

Table 1. Interval and probability values for runs of length
one test for 128-bit blocks

 Interval Probability
Box 1 0-27 0.2191945278
Box 2 28-31 0.2304573984
Box 3 32-34 0.1843489091
Box 4 35-38 0.1945435197
Box 5 39-128 0.1714556450

Total 1

Remark 1: In the Table 1, we have use the
intervals given in [5], however the calculated
probabilities of Box 4 and Box 5 are not match
with the probabilities given in [5]. After
retesting, we find that the authors in [5] give
correct intervals but wrong probabilities. The
correct probabilities are as in Table 1.
Moreover, the probabilities given in [5] are
belong to the intervals 35-40, and 41-128,
that can not belong to the intervals 35-38
and 39-128.

Similarly, we can calculate probabilitiy
intervals for sequences with different lengths.
The subinterval probabilities for runs of length
1 can be seen in Table 2.

Table 2. Interval and probability values for runs of length
one test for 64, 128, 256, and 512-bit blocks

 n = 64 n = 128

Interva

l
Probability Interval Probability

Box
1

0-12
0.19008234

44
0-27

0.21919452
78

Box
2

13-15
0.23887746

37
28-31

0.23045739
84

Box
3

16-17
0.17456037

41
32-34

0.18434890
91

Box
4

18-20
0.21147040

14
35-38

0.19454351
97

Box
5

21-64
0.18500941

64
39-128

0.17145564
50

Total 1 1
 n = 256 n = 512

Interva

l
Probability Interval Probability

Box
1

0-56
0.18725584

09
0-117

0.19356638
36

Box
2

57-61
0.18928091

85
118-125

0.21863011
42

Box
3

62-66
0.21985945

18
126-132

0.21707667
90

Box
4

67-72
0.21877592

27
133-140

0.19951554
92

Box
5

73-256
0.18482786

61
141-512

0.17121127
40

Total 1 1

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 2.CS (08) 2018 15

Remark 2: In [5], the authors give the
intervals and the corresponding probabilities for
runs of length 1. However, we found that some
value in [5] are incorrect! For 64n  , if we use
the intervals in [5], then the correct probabilities
should be:

Table 2.1. Interval and probability values for runs of
length 1 test for 64-bit blocks

 n = 64
 Interval Probability

Box 1 0-13 0.2613425337
Box 2 14-16 0.2561417553
Box 3 17-18 0.1659176815
Box 4 19-21 0.1812433426
Box 5 22-64 0.1353546869

Total 1

These probabilities are not match with the
probabilities given in [5]. Moreover, these
intervals are not equivalent. Therefore, we have
re-divide into new intervals and recalculate
probabilities in new intervals. Interestingly,
these probability values approximate the values
given in [5] but belong to other intervals.

Similar to the case 128n  , intervals and the
probability values given in [5] is not match.
Specifically, if we take the given intervals in
[5], we have recalculated the probabilities
exactly as shown in Table 1 and Table 2. If we
use the intervals as follows, the probability
values coincide with the values given in [5].

Table 2.2. Interval and probability values for runs of
length 1 test for 128-bit blocks

 n = 128
 Interval Probability

Box 1 0-26 0.1731718548
Box 2 27-30 0.2142651725
Box 3 31-33 0.1869770204
Box 4 34-37 0.2133929800
Box 5 38-128 0.2121929722

Total 0.9999999999

In case 2k  , we have calculated all
probability values and divide into subintervals
as follow:

Table 3. Interval and probability values for runs of length
two test for 64, 128, 256, and 512-bit blocks

 n = 64 n = 128
 Interval Probability Interval Probability

Box
1

0-5
0.16134454

44
0-12

0.16707580
01

Box
2

6-7
0.26096400

39
13-14

0.17407560
80

Box
3

8
0.14909396

94
15-16

0.20979407
61

Box
4

9-10
0.24528775

67
17-19

0.26659050
46

Box
5

11-32
0.18330972

55
20-64

0.18246401
11

Total
0.99999999

99

0.99999999
99

 n = 256 n = 512
 Interval Probability Interval Probability

Box
1

0-27
0.19257931

49
0-57

0.18893841
82

Box
2

28-30
0.19405196

89
58-61

0.17879497
30

Box
3

31-33
0.22292350

33
62-65

0.21049627
69

Box
4

34-36
0.18785330

79
66-70

0.22561551
70

Box
5

37-128
0.20259190

51
71-256

0.19615481
50

Total
1.00000000

01

1.00000000
01

In case 3k  , we have calculated all
probability values and divide into subintervals
as follow:
Table 4. Interval and probability values for runs of length

three test for 64, 128, 256, and 512-bit blocks
 n = 64 n = 128
 Interval Probability Interval Probability

Box
1

0-2
0.20782508

99
0-5

0.16320900
84

Box
2

3
0.20431981

09
6-7

0.27450079
90

Box
3

4
0.21673204

08
8

0.15485472
29

Box
4

5-6
0.28324547

60
9-10

0.24505901
18

Box
5

7-21
0.08787758

25
11-42

0.16237645
79

Total
1.00000000

01

1.00000000
00

 n = 256 n = 512

Interv

al
Probability

Interva
l

Probability

Box
1

0-13
0.248734758

4
0-27

0.189852605
4

Box
2

14-15
0.207164715

8
28-30

0.201497107
3

Box
3

16-17
0.213743768

1
31-33

0.231181647
3

Box
4

18-20
0.222144506

9
34-36

0.190006612
6

Box
5

20-85
0.108212250

8
37-170

0.187462027
4

Total
1.000000000

0

1.000000000
0

Journal of Science and Technology on Information Security

16 Số 2.CS (08) 2018

Remark 3: In the case of 512n  we used
Magma software to divide the intervals and
calculate the probability values because it takes
quite a long time to run in C ++ language. The
calculation time on Magma for this case is
about 5000 seconds.

C. Tests Descriptions

After calculating the probabilities, we begin
to build a new test based on the number of runs
of length k. Specifically, to test a sequence of
N n m  bits, where n is the block size we
choose. Or we consider m outputs of a
cryptographic primitive (a block cipher or a
hash function) that have output block size is n-
bit. First, we'll count the number of runs of
length k of each sequence in m blocks, and
increases the count value of the corresponding
sub-interval to 1. After calculating, we record
the counting values of each sub-interval,

denoted by
1 2 5
, , ,F F F respectively. We use the

approach as in [8], using χ2 test to evaluate the
randomness of the sequence.
Consider:

 
2

5
2

1

Pr

Pr

i i

i i

F m

m





  ,

Lastly p-value is calculated according to the
given values:

25 1
,

2 2
p value igamc

       
.

By comparing the produced p-value with the
level of significance  , we can conclude about
the randomness of the input sequence.

Note that for 2 test, we require Pr 5
i

m 

therefore for Pr 0.2
i
 we need 25m  . Thus,

the new tests can be applied for short sequences
of length N n m  bit for 25m  .

In addition, counting the total runs numbers and
runs numbers with length k of a sequence by
definition is difficult. Therefore, we use the
concept of “derivative” of a sequence.

Definition 1 (Remark 11, [5]) (derivative of

a sequence) Let
0 1 1
, , ,

n
S s s s


  be a binary

sequence of length n, the derivative of S,

denoted by
0 1 1
, , ,

n
S s s s


     is defined as

follows

1
 if 0,1, , 2,

1 if 1.
i i

i

s s i n
s

i n


     
  



Also we use a variation of S , denoted by
S  of length 1n  by adding 1’s at the

beginning the sequence S . The variation of
derivative is an important part of new defned
run tests, since the number of runs of different
length is determined by this sequence.

Let
0 1 1
, , ,

n
S s s s


  be a binary sequence

and derivative of S is
0 1 1
, , ,

n
S s s s


     .

 Then,
0 1
, , ,

n
S s s s        is defined as

follows

1
 if 1,2, , ,

1 if 0.
i

i

s i n
s

i


   
 



It is easy to prove that the total runs number
of a sequence is the weight of the derivative of
that sequence, and the runs number with the
length k in a given sequence S is the number of

samples
 


1

10 01
k

 overlaps in S  .

Algorithm 2 presents the pseudocode of the
test based on the number of runs of length k:

Algorithm 2: Test based on the number of

runs of length k    1 2

1 2
, , , , , , , m

m k k k k
S S S L l l l 

,0 ,1 ,
, , ,

i i i i n
S s s s       

0, 0i

k
i l 

while j n k  do

1 2 0

, , 1 , 2 ,
2 2 2 2k k k

i j i j i j i j k
temp s s s s 

  
            

 if 2 1ktemp   then

 1i i

k k
l l 

 end if
 1i i 

end while

Applying χ2 test for
k
L

return p-value.

IV. SOME EXPERIMENTAL RESULTS

 We have developed a randomness test
program using tests based on runs of lengths 1,
2 and 3. The program interface is shown in
Figure 1. Specifically, we have tested 4 files
true random: sample1.rng, sample2.rng,
sample3.rng, sample4.rng (these true random
files are actually 32 KB in size, that is, bits of

32 1024 8N    length, downloaded at
http://www.rngresearch.com/download/) with
the following cases n = 64, 128, 256 and 512.
The results of all 4 files have passed 3 new runs

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 2.CS (08) 2018 17

tests with n = 64, 128, 256 and 512.
Specifically, for the case n = 64, select the
significance level 0.01  , the file to be
checked is sample1.rng, we get the result as
shown in Figure 1:

Fig 1. The program interface of 3 new runs tests for

n = 64, 0.01  for file sample1.rng

Similarly, we perform tests for the cases
128,256, 512n  and for files sample2.rng,

sample3.rng, sample4.rng. The results are
summarized in the following Table 5:

Table 5. Results of 3 new runs tests for
true random files

Case n = 64

sample
1.rng

sample2.r
ng

sample3.r
ng

sample4.r
ng

Runs of
length
1 test

0.2654
71

0.177239 0.249560 0.857602

Runs of
length
2 test

0.5320
56

0.054239 0.509319 0.219101

Runs of
length
3 test

0.5785
69

0.832500 0.445590 0.941098

Case n = 128

sample
1.rng

sample2.r
ng

sample3.r
ng

sample4.r
ng

Runs of
length
1 test

0.0897
78

0.601941 0.251491 0.941470

Runs of
length
2 test

0.1695
05

0.435659 0.645554 0.416198

Runs of
length
3 test

0.2641
85

0.893517 0.393173 0.978088

Case n = 256

sample
1.rng

sample2.r
ng

sample3.r
ng

sample4.r
ng

Runs of
length
1 test

0.6409
39

0.308548 0.272620 0.422990

Runs of
length
2 test

0.8992
93

0.231489 0.571770 0.779767

Runs of
length
3 test

0.5063
32

0.814081 0.011770 0.591287

Case n = 512

sample
1.rng

sample2.r
ng

sample3.r
ng

sample4.r
ng

Runs of
length
1 test

0.1205
85

0.292832 0.480338 0.861397

Runs of
length
2 test

0.2522
12

0.821268 0.105730 0.726579

Runs of
length
3 test

0.8111
72

0.471682 0.110607 0.834620

V. CONCLUSION

In this paper, we present some results on new
randomness tests based on length of run
proposed by A. Doğanaksoy et al. [5]. First, we
have given and demonstrated in detail the
probability calculation formula for runs of
length k, with 1 k n  . Second, we show that

some probability values for runs lengths 1 and 2
are inaccurate and suggest corrections. Third,
we have built a randomness testing algorithm
based on the length of runs. Finally, we
programmed to build an accurate and efficient
tool to test randomness based on the length of
runs and apply evaluations to true random
sources.

Further research directions: Note that the
criteria presented in this paper can only be used
to evaluate sequences of lengths greater than
512 bits, so it is not applicable to assess
randomness output for cryptographic primitives
such as block ciphers or hash functions. To be
able to evaluate for sequences of length less
than or equal to 512 bits, we need to recalculate
the probability distribution for blocks of smaller
lengths and divide the probability interval
accordingly. This is an open problem that needs
further research in the future. In addition, the
evaluation of probability values for series with a
length greater than or equal to 4 and the
correlation between these tests also need further
consideration and research.

Journal of Science and Technology on Information Security

18 Số 2.CS (08) 2018

REFERENCES

[1]. M. D. MacLaren, “The art of computer
programming. Volume 2: Seminumerical
algorithms (Donald E. Knuth)”, SIAM Review
12, pp. 306-308, 1970.

[2]. G. Marsaglia, “The marsaglia random number
cdrom including the diehard battery of tests of
randomness, 1995”. URL http://www. stat. fsu.
edu/pub/diehard, 2008.

[3]. W. Caelli, “Crypt x package documentation”.
Information Security Research Centre and
School of Mathematics, Queensland University
of Technology, 1992.

[4]. A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S.
Leigh, M. Levenson, D. Banks, A. Heckert, J.
Dray, S. Vo, “Statistical test suite for random
and pseudorandom number generators for
cryptographic applications, NIST special
publication”, 2010.

[5]. A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, Z.
Akcengiz, “New statistical randomness tests
based on length of runs”. Mathematical
Problems in Engineering, 2015.

[6]. S. W. Golomb, “Shift register sequences”.
Aegean Park Press, 1982.

[7]. P. L'Ecuyer, R. Simard, “TestU01: AC library
for empirical testing of random number
generators”. ACM Transactions on
Mathematical Software (TOMS) 33, 22, 2007.

[8]. F. Sulak, A. Doğanaksoy, B. Ege, O. Koçak,
“Evaluation of randomness test results for short
sequences”, in International Conference on
Sequences and Their Applications. Springer, pp.
309-319, 2010.

ABOUT THE AUTHOR

B.S. Linh Hoang Dinh

Workplace: Institute of
Cryptography Science and
Technology.

Email: linhhd@bcy.gov.vn

The education process: has received
a mathematical bachelor degree in
Ha Noi University of Science, in
2014.

Research today: symmetric cryptography algorithm.

