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Abstract— Random Sequences and random 
numbers play a very important role in 
cryptography. In symmetric cryptography 
primitives, a secret key is the most important 
component to ensure their security. While 
cryptographic protocols or digital signature 
schemes are also strongly dependent on random 
values. In addition, one of the criteria for 
evaluating security for cryptographic primitives 
such as block cipher, hash function... is to 
evaluate the output randomness. Therefore, the 
assessment of randomness according to statistical 
tests is really important for measuring the 
security of cryptographic algorithms. In this 
paper, we present some research results on 
randomness tests based on the length of runs 
proposed by A. Doğanaksoy et al in 2015. First, 
we show that some probability values for tests 
based on lengths 1 and 2 are inaccurate and 
suggest editing. Secondly, we have given and 
demonstrated for the general case the runs of 
any length k. Finally, we built a randomness 
testing tool and applied evaluations to true 
random sources. 

Tóm tắt— Các dãy và các số ngẫu nhiên đóng 
một vai trò rất quan trọng trong mật mã. Trong 
các nguyên thuỷ mật mã đối xứng, khoá bí mật 
chính là thành phần quan trọng nhất nhằm đảm 
bảo tính an toàn của chúng. Trong khi đó, các 
giao thức mật mã hay lược đồ chữ ký số cũng phụ 
thuộc nhiều vào các giá trị ngẫu nhiên. Ngoài ra, 
một trong các tiêu chí để đánh giá tính an toàn 
cho các nguyên thuỷ mật mã như mã khối, hàm 
băm… là đánh giá tính ngẫu nhiên đầu ra. Do đó, 
việc đánh giá tính ngẫu nhiên theo các kiểm tra 
thống kê thực sự rất quan trọng đối với việc đánh 
giá tính an toàn của các thuật toán mật mã. 
Trong bài báo này, chúng tôi trình bày một số kết 
quả nghiên cứu về các tiêu chuẩn kiểm tra loạt 
dựa trên độ dài đã được đề xuất bởi A. 
Doğanaksoy cùng đồng sự năm 2015. Đầu tiên, 
chúng tôi chỉ ra rằng một số giá trị xác suất cho 
các loạt độ dài 1 và 2 là chưa chính xác và đề xuất 
chỉnh sửa. Sau đó, chúng tôi đã đưa ra và chứng 
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minh cho trường hợp tổng quát các loạt có độ dài 
k bất kỳ. Cuối cùng, chúng tôi đã xây dựng một 
công cụ kiểm tra tính ngẫu nhiên dựa trên độ dài 
các loạt và áp dụng đánh giá cho các nguồn ngẫu 
nhiên thực sự. 

Keywords— Randomness testing; Block 
cipher; Hash function; Runs. 
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I. INTRODUCTION 

Statistical randomness tests play an 
important role in assessing the security of 
cryptographic algorithms. There have been 
many independently statistical randomness tests 
in the literature. Knuth [1] presented a number 
of statistical tests including frequency check, 
serial test, poker test, series test (run)... Another 
test suite is the DIEHARD tests [2] including 18 
statistical tests. In addition, there is a Crypt-XS 
test suite [3] proposed by the Information 
Security Research Center of Queensland 
University of Technology. Finally, the currently 
widely used test suite is the SP 800-22 
statistical test suite [4] originally developed by 
NIST with 16 tests but then shortened to 15 
tests (omitted Lempel-Ziv complexity test). 

In addition, there are a number of 
randomness testing standards that are not 
presented in test suites or independently used. 
In 1992 Maurer proposed a universal statistical 
test for random bit generators. In 2004, 
Hernandez et al. proposed a new test called the 
Strict Avalanche Criterion (SAC)... And most 
recently, Doğanaksoy et al. [5] proposed three 
new randomness tests based on the length of 
runs in 2015.  

Our Contributions. In this paper, we 
present some new results on randomness tests 
based on the length of runs. Specifically, we 
have given and demonstrated in detail the 
probability calculation formula for the general 
case of a binary sequence of length n having 
exactly lk runs of length k, with 1 k n  . 

Furthermore, we have shown that some 

Some results on new statistical randomness 
tests based on length of runs
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probability values given in [5] are inaccurate, 
and this may lead to a mistake in assessing the 
randomness of the input sequences, thereby 
giving to incorrect assertions about the security 
of cryptographic algorithms. Finally, we built a 
tool that quickly, accurately and efficiently 
checks a data file that is random or not using 
three new randomness tests based on length 
of runs. 

Construction. The rest of the paper 
includes: Part II presents three postulates on 
randomness given by Golomb [6] as well as 
some tests related to runs. The new results of 
research on tests based on length of run are 
presented in section III. In section IV, we 
present a randomness assessment tool using 3 
new tests. Finally, the conclusions and future 
research directions are presented in Section V. 

II. PRELIMINARIES 

In this section, we present the three 
propositions of randomness given by Golomb in 
[6]. This is one of the bases for assessing the 
randomness of a sequence. Then, we outlined 
some of the testing standards related to the runs 
as well as the reasons for studying new 
standards based on length of runs. 

A. Golomb’s Randomness Postulates 

Let 
0 1 1
, , , ,

n
S s s s


  

 
be an infnite binary 

sequence periodic with n or a finite sequence of 
length n. A run is defined as an uninterrupted 
maximal sequence of identical bits. Runs of 0’s 
are called gap; runs of 1’s are called block. R1, 
R2, and R3 are Golomb’s randomness 
postulates which are given as follows: 

 (R1) In a period of S, the number of 1’s 
should differ from the number of 0’s by at 
most 1. In other words, the sequence should 
be balanced. 
 (R2) In a period of S, at least half of the 
total number of runs of 0’s or 1’s should 
have length one, at least onefourth should 
have length 2, at least one-eighth should 
have length 3, and the like. Moreover, for 
each of these lengths, there should be 
(almost) equally many gaps and blocks. 
 (R3) The autocorrelation function  C t  

should be two-valued. That is, for some 
integer K and for all 0,1, , 1t n  , 

   
1

0

, 0
1

,1 1.
i i t

n s s

i

n t
C t

K t n


 



    
   

  

In this paper, we mainly focus on the 
first and second postulates, and the last one is 
not a matter of concern. 

B. Some basic run tests 

Golomb's second postulate is on the number 
of runs in a sequence. Tests which consider the 
number of runs, are called run tests and are also 
included in many test suites such as Knuth [1], 
DIEHARD [2], TestU01 [7], NIST [4]. Since 
calculating the expected number of fixed-length 
runs in a random sequence is a difficult task 
(especially when the length of runs is large), 
most tests only consider the total number of 
runs and do not consider the number of runs of 
different lengths as follows:  

Run tests in Knuth [1] and DIEHARD [2] 
test suites: 

These test suites define the run test on 
random numbers. They define runs as runs up 
and runs down in a sequence. For example, 
consider a sequence of length 10,

10
138742975349S  . Runs are indicated by 

putting a vertical line between 
j
s ’ when 

1j j
s s


 . Therefore, runs of the sequence 

138742975349 can be seen as
138 7 4 29 7 5 349 . In other words, the run test 

examines the length of monotone subsequences. 

Run test in TestU01 [7] test suite: 

This test suite defines runs and gap tests for 
checking the randomness of long binary 
sequences of length n. This test calculates the 
runs of 1 and 0 until the total number of runs is 
2r . Next, number of runs 1 and 0 correspond to 
each length of 1,2, ,j k   is calculated and 

recorded. Finally, applying χ2 test on these 
values. Test of the longest run of one also be 
defined for subsequences of length m that 
obtained from the original binary sequence of 
length n. 

Run test in NIST [4] test suite: 

NIST test suite is widely used to checks the 
randomness of pseudorandom sequences. In 
the suite, 2 of 15 tests are variations of run 
tests. They are called run test and longest run 
of ones in a block test. The first one deals with 
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the total number of runs in a sequence. It 
calculates the total number of runs in a 
sequence and determines whether it is 
consistent with the expected number of runs, 
which is supposed to be close to / 2n  in a 

sequence or not. The second one determines 
whether the longest run of ones in the 
sequence is consistent with the length of the 
longest runs of ones which is in a random 
sequence. In NIST test suite the reference 
distributions for the run tests are a χ2 

distribution.  

III. TESTS BASED ON LENGTH OF RUNS 

In this section, we present the theoretical and 
practical basis for calculating the number of 
sequences with a certain number of runs of 
specific lengths. Then we calculate the expected 
probability from the total number of sequences 
of length n. Calculating the exact probabilities 
of the number of runs of length k (for 1 k n  ) 

in a sequence allows us to define new runs tests. 
However, when the runs are of great length, the 
computational complexity increases 
exponentially so it is not feasible to accurately 
calculate probability values. 

A. Notations 

Let’s denote the total number of runs and 
number of runs  of lengths one, two,…, and k as 

1 2
, , ,
t
r r r … and 

k
r  ans we use samples of these 

variables 
1 2

, , ,...,
k

r l l l  for 1 ,k n  respectively.  

We denote the probability of randomly chosen 
binary sequence with r runs by  Pr

t
r r . In 

the same way,  Pr
k k
r l  is the probability of 

randomly chosen binary sequence with 
k
l  runs 

of length k for 1 k n  . 

We denote 
1 2
, , ,

m
S S S  be the blocks of a 

long sequence or outputs of block ciphers and 
hash functions. 

Lastly, let denote 
1 2
,L L , … and 

k
L  be the set of 

number of runs of lengths one, two, … and k in 
the sequences for 1 k n  , respectively. That 

is  1 2, , , m
i i i i
L l l l 

 
and j

i
l  corresponds the 

number of runs of length i in the j sequence. 

 

 

 

B. Evaluation of Probabilities 

In the calculations of probabilities we use the 
following Propositions: 

Proposition 1 (Fact 2, [5]) The number of 
positive integer solutions of 


1 2

,
r

x x x n n       is 
1

1

n

r

        
. 

Proposition 2 (Fact 1, [5]) The number of 
nonnegative integer solutions of 


1 2

,
r

x x x n n       is 
1

1

n r

r

         
. 

Moreover, in order to illustrate the runs of a 
sequence we use the equation 

1 2 r
x x x n     for a sequence with length 

n and having r runs.  1,2, ,
i
x i r   represents 

the number of bits in ith. An important property 
of this illustration is that it gives no information 
about content of ,

i
x s ; that is 

i
x  can be a run of 

0’s or 1’s. Therefore, each positive integer 

solution of the equation 
1 2 r
x x x n     

corresponds to two sequences: one starts with 1 
and the other starts with 0. Thus, the number of 
sequences with length n and having exactly r 

runs is 
1

2
1

n

r

        
 by Proposition 1. 

Example 1.  
Let 00101010011111001100011101010100S   

be a binary sequence of length 32 and having 19 
runs. Then, 

1 2 19
32x x x    ,

             
1 2 4 6 7 8 9 11 12 14 16 18 193 5 10 13 15 17

00 1 0 1 0 1 00111110011000111 0 1 0 1 0 1 00
x x x x x x x x x x x x xx x x x x x

 , 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

2, 1, 1, 1, 1,

1, 2, 5, 2, 2,

3, 3, 1, 1, 1,

1, 1, 1, 2.

x x x x x

x x x x x

x x x x x

x x x x

          
         

 

Now, we consider the case that a sequence of 

length n and having exactly total r runs, 
1
l  of 

which are runs of length 1, 
2
l  of which are runs 

of length 2, …, 
k
l  of which are runs of length k. 

We have the following Theorem: 
Theorem 1. The probability of randomly 

chosen binary sequence 
1 2
, , ,

n
S s s s   with 

length n, having total of r runs, 
1
l  of which are 
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runs of length 1, 
2
l  of which are runs of length 

2, …, 
k
l  of which are runs of length k, is 

 
   

1 1

1 2 2 1

1 2

1 1 2 1

1 2

1

Pr , ,...,

1 2 ... 2 1

... 1

...
...

.
2

t k k

k k

k

k

k

n

r r r l r l

n kr k l k l l l

r l l l

r r l r l l l

l l l

 





   

                    
                                



  
Proof. We can illustrate the sequence as 

follow: 

1 2 r
x x x n    . 

Let us first assume that the last 
1
l  are of 

length 1 and 
2
l  are of length 2, …, and 

k
l  are of 

length k. The rest are of at least length  1k  . 

Consider, 

1

1 2 1 1

1 2 1 2 1 1 2 1

1 1

1 1

... 1 ... 1 ...

1,

2,

...

.
k k k

r l r r

r l l r l r l

r l l l r l l l r l l l

x x x

x x x

x x x k
 

  

     

            

   

   

   







 

Substituting these into the above equation, 
we have: 

 

 

1 2

2 1

1 2

1 2 ...

1 2 1 2...

... 2 2 2 1 1 1 ,

2 ... .

k

k

k

r l l l

l l l

kr l l l

x x x

k k k n

x x x n l l kl

   

   

  

             

        



  
  



     Note that, 1,
i
x k   for  

 1 2
1 ...

k
i r l l l      . 

Set  1i i
y x k    for 

 1 2
1 ...

k
i r l l l      , and substituting into 

the above equation, we have: 

   

  
 

     
   

1 2

1 2

1 2

1 2...

1 2 ...

1 2 1 2

1 2

1 1

1 2 ... ,

2 ... 1 ...

1 1 ... .

k

k

kr l l l

r l l l

k k

k

y k y k

y k n l l kl

y y y

n l l kl k r l l l

n k r kl k l l

   

   

     

       

   

             
       





 
 
 
 
 
 

Applying the Proposition 2, number of 
nonnegative solution of this equation is: 

   1 2 1

1 2

1 2 ... 1

... 1
k

k

n kr k l k l l

r l l l


                   
. 

Therefore, the number of all binary 
sequences of length n with conditions stated 
above is: 

   1 2 1

1 2

1 1 2 1

1 2

1 2 ... 1
2

... 1

...
... .

k

k

k

k

n kr k l k l l

r l l l

r r l r l l l

l l l





                   
                                 

 

Hence, the probability of a randomly chosen 

sequence with length n, having total of r runs, 
1
l  

of which are runs of length 1, 
2
l  of which are 

runs of length 2, …, 
k
l  of which are runs of 

length k, is: 

 
   

1 1

1 2 2 1

1 2

1 1 2 1

1 2

1

Pr , ,...,

1 2 ... 2 1

... 1

...
...

2

t k k

k k

k

k

k

n

r r r l r l

n kr k l k l l l

r l l l

r r l r l l l

l l l

 





  

                    
                                

 

     

Now, we evaluate the number of sequences 

with length n and 
k
l  runs of length k, without 

depending on the other variables. We have the 
following corollary: 

Corollary 1. Let  k k
N l  denote the number 

of sequences with length n and having exactly 
k
l  

runs of length k. Clearly, we have maximum 
/n k 

  
 runs of length k. Otherwise, sequence 

length exceeds n. Then, for 0,1, , /
k
l n k     , 

 
  

1 1

/ 1

1 1

0 0 1 1 2

1 1 1

1 2

1 ... 1
2

... 1

...
... .

k

n k n n
k

k k
l l r k

k

k

n kr k l l
N l

r l l l

r r l r l l

l l l



   


  



                 
                                

 

It implies the probabilities 

 
 

Pr
2

k k

k k n

N l
r l   . 

We use the Algorithm 1 in order to evaluate 
the probabilities  Pr

k k
r l . 
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Algorithm 1: Evaluate  Pr
k k
r l  for 

0,1, , /
k
l n k       

 2 1
0, , 0, 0, 1, 0,

k k k
l l l r N l       

while /
k
l n k    

 do 

   … 
   while 

2
/ 2l n    

 do 

      while 
1
l n  do 

         while r n  do            

   

  

1 1

1

/ 1

1 1

0 0 1 1 2

1 1 1

1 2

1

2
1 ... 1

... 1

...
...

k

k k k k n

n k n n
k

l l r k

k

k

N l N l

n kr k l l

r l l l

r r l r l l

l l l





   


  



  

                 
                                

    

            1r r    
         end while 

         
1 1

1l l    

      end while 

      
2 2

1l l    

   end while 
  … 

   1
k k
l l    

end while 

return 
k
N  

Computational Complexity: Let the 
complexity of computing  k k

N l  be  k  then 

the complexity of probability searching 
algorithm for runs of length k is about 

   1kn k . 

After evaluating all probability values, we 
divide these into 5 subintervals as in [5].  

Case 1k  . 
Choose 128n  , we have calculated all 

probability values and divide into subintervals 
as follow 

   

   

 

1 1

1 1

1

27 31

1 1 1 1 1 1
0 28

34 38

1 1 1 1 1 1
31 35

128

1 1 1
39

1 Pr , 2 Pr ,

3 Pr , 4 Pr ,

5 Pr .

l l

l l

l

Box r l Box r l

Box r l Box r l

Box r l

 

 



   

   

 

 

 



 

 

 

 

Then, we get Table 1 for probability 
subintervals. 

Table 1. Interval and probability values for runs of length 
one test for 128-bit blocks 

 Interval Probability 
Box 1 0-27 0.2191945278 
Box 2 28-31 0.2304573984 
Box 3 32-34 0.1843489091 
Box 4 35-38 0.1945435197 
Box 5 39-128 0.1714556450 

Total 1 

Remark 1: In the Table 1, we have use the 
intervals given in [5], however the calculated 
probabilities of Box 4 and Box 5 are not match 
with the probabilities given in [5]. After 
retesting, we find that the authors in [5] give 
correct intervals but wrong probabilities. The 
correct probabilities are as in Table 1. 
Moreover, the probabilities given in [5] are 
belong to the intervals 35-40, and 41-128, 
that can not belong to the intervals 35-38 
and 39-128. 

Similarly, we can calculate probabilitiy 
intervals for sequences with different lengths. 
The subinterval probabilities for runs of length 
1 can be seen in Table 2. 

Table 2.  Interval and probability values for runs of length 
one test for 64, 128, 256, and 512-bit blocks 

 n = 64 n = 128 

 
Interva

l 
Probability Interval Probability 

Box 
1 

0-12 
0.19008234

44 
0-27 

0.21919452
78 

Box 
2 

13-15 
0.23887746

37 
28-31 

0.23045739
84 

Box 
3 

16-17 
0.17456037

41 
32-34 

0.18434890
91 

Box 
4 

18-20 
0.21147040

14 
35-38 

0.19454351
97 

Box 
5 

21-64 
0.18500941

64 
39-128 

0.17145564
50 

Total 1  1 
 n = 256 n = 512 

 
Interva

l 
Probability Interval Probability 

Box 
1 

0-56 
0.18725584

09 
0-117 

0.19356638
36 

Box 
2 

57-61 
0.18928091

85 
118-125 

0.21863011
42 

Box 
3 

62-66 
0.21985945

18 
126-132 

0.21707667
90 

Box 
4 

67-72 
0.21877592

27 
133-140 

0.19951554
92 

Box 
5 

73-256 
0.18482786

61 
141-512 

0.17121127
40 

Total 1  1 
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Remark 2: In [5], the authors give the 
intervals and the corresponding probabilities for 
runs of length 1. However, we found that some 
value in [5] are incorrect! For 64n  , if we use 
the intervals in [5], then the correct probabilities 
should be: 

Table 2.1. Interval and probability values for runs of 
length 1 test for 64-bit blocks 

 n = 64 
 Interval Probability 

Box 1 0-13 0.2613425337 
Box 2 14-16 0.2561417553 
Box 3 17-18 0.1659176815 
Box 4 19-21 0.1812433426 
Box 5 22-64 0.1353546869 

Total 1 

These probabilities are not match with the 
probabilities given in [5]. Moreover, these 
intervals are not equivalent. Therefore, we have 
re-divide into new intervals and recalculate 
probabilities in new intervals. Interestingly, 
these probability values approximate the values 
given in [5] but belong to other intervals. 

Similar to the case 128n  , intervals and the 
probability values given in [5] is not match. 
Specifically, if we take the given intervals in 
[5], we have recalculated the probabilities 
exactly as shown in Table 1 and Table 2. If we 
use the intervals as follows, the probability 
values coincide with the values given in [5]. 

Table 2.2. Interval and probability values for runs of 
length 1 test for 128-bit blocks 

 n = 128 
 Interval Probability 

Box 1 0-26 0.1731718548 
Box 2 27-30 0.2142651725 
Box 3 31-33 0.1869770204 
Box 4 34-37 0.2133929800 
Box 5 38-128 0.2121929722 

Total 0.9999999999 

In case 2k  , we have calculated all 
probability values and divide into subintervals 
as follow: 

Table 3. Interval and probability values for runs of length 
two test for 64, 128, 256, and 512-bit blocks 

 n = 64 n = 128 
 Interval Probability Interval Probability 

Box 
1 

0-5 
0.16134454

44 
0-12 

0.16707580
01 

Box 
2 

6-7 
0.26096400

39 
13-14 

0.17407560
80 

Box 
3 

8 
0.14909396

94 
15-16 

0.20979407
61 

Box 
4 

9-10 
0.24528775

67 
17-19 

0.26659050
46 

Box 
5 

11-32 
0.18330972

55 
20-64 

0.18246401
11 

Total 
0.99999999

99 
 

0.99999999
99 

 
 n = 256 n = 512 
 Interval Probability Interval Probability 

Box 
1 

0-27 
0.19257931

49 
0-57 

0.18893841
82 

Box 
2 

28-30 
0.19405196

89 
58-61 

0.17879497
30 

Box 
3 

31-33 
0.22292350

33 
62-65 

0.21049627
69 

Box 
4 

34-36 
0.18785330

79 
66-70 

0.22561551
70 

Box 
5 

37-128 
0.20259190

51 
71-256 

0.19615481
50 

Total 
1.00000000

01 
 

1.00000000
01 

In case 3k  , we have calculated all 
probability values and divide into subintervals 
as follow: 
Table 4. Interval and probability values for runs of length 

three test for 64, 128, 256, and 512-bit blocks 
 n = 64 n = 128 
 Interval Probability Interval Probability 

Box 
1 

0-2 
0.20782508

99 
0-5 

0.16320900
84 

Box 
2 

3 
0.20431981

09 
6-7 

0.27450079
90 

Box 
3 

4 
0.21673204

08 
8 

0.15485472
29 

Box 
4 

5-6 
0.28324547

60 
9-10 

0.24505901
18 

Box 
5 

7-21 
0.08787758

25 
11-42 

0.16237645
79 

Total 
1.00000000

01 
 

1.00000000
00 

 
 n = 256 n = 512 

 
Interv

al 
Probability 

Interva
l 

Probability 

Box 
1 

0-13 
0.248734758

4 
0-27 

0.189852605
4 

Box 
2 

14-15 
0.207164715

8 
28-30 

0.201497107
3 

Box 
3 

16-17 
0.213743768

1 
31-33 

0.231181647
3 

Box 
4 

18-20 
0.222144506

9 
34-36 

0.190006612
6 

Box 
5 

20-85 
0.108212250

8 
37-170 

0.187462027
4 

Total 
1.000000000

0 
 

1.000000000
0 
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Remark 3: In the case of 512n   we used 
Magma software to divide the intervals and 
calculate the probability values because it takes 
quite a long time to run in C ++ language. The 
calculation time on Magma for this case is 
about 5000 seconds. 

C. Tests Descriptions 

After calculating the probabilities, we begin 
to build a new test based on the number of runs 
of length k. Specifically, to test a sequence of 
N n m   bits, where n is the block size we 
choose. Or we consider m outputs of a 
cryptographic primitive (a block cipher or a 
hash function) that have output block size is n-
bit. First, we'll count the number of runs of 
length k of each sequence in m blocks, and 
increases the count value of the corresponding 
sub-interval to 1. After calculating, we record 
the counting values of each sub-interval, 

denoted by 
1 2 5
, , ,F F F  respectively. We use the 

approach as in [8], using χ2 test to evaluate the 
randomness of the sequence. 
Consider: 

 
2

5
2

1

Pr

Pr

i i

i i

F m

m





  , 

Lastly p-value is calculated according to the 
given values: 

25 1
,

2 2
p value igamc

       
. 

By comparing the produced p-value with the 
level of significance  , we can conclude about 
the randomness of the input sequence. 

Note that for 2  test, we require Pr 5
i

m   

therefore for Pr 0.2
i
  we need 25m  . Thus, 

the new tests can be applied for short sequences 
of length N n m   bit for 25m  . 

In addition, counting the total runs numbers and 
runs numbers with length k of a sequence by 
definition is difficult. Therefore, we use the 
concept of “derivative” of a sequence. 

Definition 1 (Remark 11, [5]) (derivative of 

a sequence) Let 
0 1 1
, , ,

n
S s s s


   be a binary 

sequence of length n, the derivative of S, 

denoted by 
0 1 1
, , ,

n
S s s s


     is defined as 

follows 

1
 if 0,1, , 2,

1             if  1.
i i

i

s s i n
s

i n


     
  


 

Also we use a variation of S , denoted by 
S   of length 1n   by adding 1’s at the 

beginning the sequence S . The variation of 
derivative is an important part of new defned 
run tests, since the number of runs of different 
length is determined by this sequence. 

Let 
0 1 1
, , ,

n
S s s s


   be a binary sequence 

and derivative of S is 
0 1 1
, , ,

n
S s s s


     . 

 Then, 
0 1
, , ,

n
S s s s         is defined as 

follows  

1
 if 1,2, , ,

1        if  0.
i

i

s i n
s

i


   
 


 

It is easy to prove that the total runs number 
of a sequence is the weight of the derivative of 
that sequence, and the runs number with the 
length k in a given sequence S is the number of 

samples 
 


1

10 01
k

  overlaps in S  .  

Algorithm 2 presents the pseudocode of the 
test based on the number of runs of length k: 

Algorithm 2: Test based on the number of 

runs of length k    1 2

1 2
, , , , , , , m

m k k k k
S S S L l l l    

,0 ,1 ,
, , ,

i i i i n
S s s s         

0, 0i

k
i l   

while j n k   do 

   
1 2 0

, , 1 , 2 ,
2 2 2 2k k k

i j i j i j i j k
temp s s s s 

  
            

    if 2 1ktemp    then 

      1i i

k k
l l    

   end if 
   1i i    

end while 

Applying χ2 test for 
k
L    

return p-value. 

IV. SOME EXPERIMENTAL RESULTS 

 We have developed a randomness test 
program using tests based on runs of lengths 1, 
2 and 3. The program interface is shown in 
Figure 1. Specifically, we have tested 4 files 
true random: sample1.rng, sample2.rng, 
sample3.rng, sample4.rng (these true random 
files are actually 32 KB in size, that is, bits of 

32 1024 8N     length, downloaded at 
http://www.rngresearch.com/download/) with 
the following cases n = 64, 128, 256 and 512. 
The results of all 4 files have passed 3 new runs 
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tests with n = 64, 128, 256 and 512. 
Specifically, for the case n = 64, select the 
significance level 0.01  , the file to be 
checked is sample1.rng, we get the result as 
shown in Figure 1: 

 
Fig 1. The program interface of 3 new runs tests for 

n = 64, 0.01   for file sample1.rng 

Similarly, we perform tests for the cases 
128,256, 512n  and for files sample2.rng, 

sample3.rng, sample4.rng. The results are 
summarized in the following Table 5: 

Table 5. Results of 3 new runs tests for                       
true random files 

Case n = 64 

 
sample
1.rng 

sample2.r
ng 

sample3.r
ng 

sample4.r
ng 

Runs of 
length 
1 test 

0.2654
71 

0.177239 0.249560 0.857602 

Runs of 
length 
2 test 

0.5320
56 

0.054239 0.509319 0.219101 

Runs of 
length 
3 test 

0.5785
69 

0.832500 0.445590 0.941098 

Case n = 128 

 
sample
1.rng 

sample2.r
ng 

sample3.r
ng 

sample4.r
ng 

Runs of 
length 
1 test 

0.0897
78 

0.601941 0.251491 0.941470 

Runs of 
length 
2 test 

0.1695
05 

0.435659 0.645554 0.416198 

Runs of 
length 
3 test 

0.2641
85 

0.893517 0.393173 0.978088 

Case n = 256 

 
sample
1.rng 

sample2.r
ng 

sample3.r
ng 

sample4.r
ng 

Runs of 
length 
1 test 

0.6409
39 

0.308548 0.272620 0.422990 

Runs of 
length 
2 test 

0.8992
93 

0.231489 0.571770 0.779767 

Runs of 
length 
3 test 

0.5063
32 

0.814081 0.011770 0.591287 

Case n = 512 

 
sample
1.rng 

sample2.r
ng 

sample3.r
ng 

sample4.r
ng 

Runs of 
length 
1 test 

0.1205
85 

0.292832 0.480338 0.861397 

Runs of 
length 
2 test 

0.2522
12 

0.821268 0.105730 0.726579 

Runs of 
length 
3 test 

0.8111
72 

0.471682 0.110607 0.834620 

 

V. CONCLUSION 

In this paper, we present some results on new 
randomness tests based on length of run 
proposed by A. Doğanaksoy et al. [5]. First, we 
have given and demonstrated in detail the 
probability calculation formula for runs of 
length k, with 1 k n  . Second, we show that 

some probability values for runs lengths 1 and 2 
are inaccurate and suggest corrections. Third, 
we have built a randomness testing algorithm 
based on the length of runs. Finally, we 
programmed to build an accurate and efficient 
tool to test randomness based on the length of 
runs and apply evaluations to true random 
sources.  

Further research directions: Note that the 
criteria presented in this paper can only be used 
to evaluate sequences of lengths greater than 
512 bits, so it is not applicable to assess 
randomness output for cryptographic primitives 
such as block ciphers or hash functions. To be 
able to evaluate for sequences of length less 
than or equal to 512 bits, we need to recalculate 
the probability distribution for blocks of smaller 
lengths and divide the probability interval 
accordingly. This is an open problem that needs 
further research in the future. In addition, the 
evaluation of probability values for series with a 
length greater than or equal to 4 and the 
correlation between these tests also need further 
consideration and research. 
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