Journal of Science and Technology on Information Security

A New Proof for the Security of the Keyed
Sponge Construction in the Ideal Compression
Function Model

Abstract— In this paper, we present a new
proof for the security of keyed Sponge. Our
method is built on the previous result about the
indistinguishability of the Sponge construction.
Following this approach, we can see the strong
relationship between the security of keyed Sponge
and its original version.

Tém tit— Trong bai bao nay, ching toi dwa ra
mdt chirng minh méi cho d§ an toan ciia ciu tric
Sponge ¢6 khoa. Phwong phap caa ching toi si
dung két qua truée do vé tinh khdng phan biét
dwoc ciia cau trdc Sponge. Theo cach tiép can
nay, chiing ta c6 thé thay méi lién hé chat ché vé
dd an toan cua cau trac Sponge c6 khoa va phién
ban nguyén thiy ciaa no.

Keywords— Sponge construction, keyed
Sponge construction, ideal compression function
model, PRF security.

Tir khéa— Ciu triic Sponge, Ciu triic Sponge
co khoa, mé hinh ham nén ly twong, djp an toan
PRF.

I. INTRODUCTION

Since its introduction, the  Sponge
construction [1] has been attracting research
attention in the cryptography community. It is
the fundamental of the SHA-3 standard Keccak
[2]. In the security model of Maurer [3], Bertoni
at el. [4] proved that the advantage in
differentiating the sponge construction from a
random oracle is upper bounded by O(N?/2°),
with N the number of calls to the underlying
function f and c the capacity.

Inspired by the introduction of keys into hash
functions as before and the beautiful theoretical
results of the sponge construction, designers
presented the keyed version for it:
Sponge(K|[M), we denote by KeyedSponge.
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This version was proposed to build a wide
spectrum  of  symmetric-key  primitive:
Reseedable pseudorandom number generator
[5], pseudorandom function and message
authentication codes (PRFs/MAC) [6, 7],
extendable-output functions [8] and
authenticated encryption modes [9]. Because of
its wide application, the security of the
KeyedSponge construction has been evaluated
in many documents and now it still attracts
interest from the cryptography community.

Previous results

The KeyedSponge construction has been
previously studied by two main approaches: the
H-coefficient technique and the Sponge graph.
For the first method there are two outstanding
papers: Elena Andreeva [10] and Peter Gazi
[11]. Specifically, Elena Andreeva evaluated the
security of keyed Sponge when the key length k
is a multiple of r. The distinguishing advantage
of the KeyedSponge construction under any
adversary who makes at most g construction
queries, and at most Q primitive queries is
upper bounded by
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The distinguishing advantage of the
KeyedSponge was estimated by Peter Gazi has

upper bound:
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where | is the maximum number of blocks in
each construction query, z (z<r) is the fixed
length of output and Ny = gl + Q.

For the second method, Guido Bertoni [6]
uses the Sponge graph to directly evaluate the
security of the KeyedSponge construction. The
distinguishing advantage is upper bounded by:

2
0 (N—°+ Al +£).
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In our knowledge, it is the best result ever.

Our contributions. In this paper, we give a
new proof for the security of the KeyedSponge
construction according to the second approach.
We evaluate it by using the security of the
Sponge construction. Our bound are:
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where N is the number of fresh calls to the
underlying function f when adversary makes
both construction queries and primitive queries.
Although this result is not as tight as Guido
Bertoni's, it shows a close relationship between
the security of the KeyedSponge and Sponge
construction.

Organization of the paper. After the
introduction, in Section 2 we present some
preliminaries. In Section 3, we recall the
security of the Sponge construction. In Section 4,
we evaluate the indistinguishability of the
KeyedSponge construction. Finally, some
conclusions are given in Section 5.

Il. PRELIMINARIES

We denote the set of all finite strings of
arbitrary length by Z> , the set of infinite-length
bit strings is denoted by Z3°, the concatenation of
two strings x and y is denoted as x|ly. We let
left,(x) denote the z leftmost bits of x. We

denote the length in bits of a message x by |x|. The
number of r-bit blocks of x is denoted by | x|,
Random oracle.
Let RO:Z5 — Z3 be a random oracle
which takes inputs of arbitrary but finite length
and returns random infinite strings, where each

output bit is selected uniformly and
independently for every input M.

We denote a call to RO where the output is
truncated to its z first bits by Z = RO(M, z).
Sponge construction.

The Sponge construction determines the
Sponge  function  Sponge[f,pad, r]with
domain Z3 and codomain Z3° by using a fixed
length underlying function f (transformation or
permutation), a sponge-compliant padding rule
(see [12], Definition 1) and a parameter bitrate
r. It can return a finite-length output by taking
its z first bits.

The underlying function f operates on a fix
number of bit, the width b. The state of the
Sponge construction is b bit. First, we initialize
the b bits of the Sponge state to zero. The input
is padded and cut into r-bits blocks. Then it is
processed by an absorbing phase followed by a
squeezing phase (see Fig.1). In these phase, the
first r bits and the remaining b-r bits of the state
are treated differently. We let the first r bits of
the state as the outer part 5, and the last c = b —
r bits as its inner part $ (c is called the
capacity). The Sponge construction is presented
in Fig.1.

The Sponge construction gets as input a
message M, a natural number z, and it outputs a
string Z € {0,1}%:

Sponge/ (M, z) = Sponge[f, pad,r](M, z),
where  Sponge[f,pad,r] is defined in
Algorithm 1.

pad
Y
|0
cllo

Fig.1. The Sponge construction
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Algorithm 1. Sponge|[f, pad, ]

Require:r < b
Interface: Z = sponge(M, z) with M € Z3, z >0 and
Z €Z5.
P = M||pad[r](|M])
s=0b
fori=0to |P|,—1do
s=s@ (P]l0°™)
s=f(s)
end for
T= I.SJT'
while |T| < z do
s=f(s)
T = T||left,(s)
end while
return Z = left,(T)

The absorb function. The absorb function. The
function absorb(-) takes as input a message P
with |P| multiple of  and it outputs the state
sezb
s=0°
Fori=0to|P|,—1do
s =s@ (PI0"™)
s =f(s)
End for
Return s

Path. P is a path to the state s if s=
absorb(P).

The Sponge graph. The Sponge function can
be represented by the Sponge graph with
2b = 27*¢ nodes and 2 edges. The nodes are
the state values and for every couple (s,t)
with t = f(s) there is a directed edge from s
to t. From each node, there is only one
outgoing edge. If f is a permutation, in each
node, there is only one incoming edge.

These nodes can be divided by the value of
the inner state. We call the set of all nodes
that same inner state by a supernode. Edges
between nodes are therefore also edges
between supernodes. There are 2¢ supernodes,
one supernode corresponds to one inner state
value. Each supernode has 2" nodes which
defined by the outer part 5 of their state.

The keyed Sponge.

The keyed Sponge is denoted as
KeyedSponge which gets as input a key K €
20 No 2.CS (10) 2019

{0,1}%, a message M € {0,1}*, and a natural
number z. Then, it returns a string Z € {0,1}%:
KeyedSponge. (M, z) = Sponge’ (K||M, z)
=7Z.
The security model. An adversary A is an
algorithm that is given query access to one or
more oracle O, denoted AY. Let AY =1 be
the event that A returns 1 after A's
interaction. In the security model of this
paper, we consider the KeyedSponge
construction is built on a random permutation
f. The PRF-security of Keyed Sponge is the
indistinguishability between the real world
and the ideal world. Let 0=

KeyedSponge’,(-) with K bl {0,1}* be the
oracle in the real world, and 0, = RO be the
oracle in the ideal world. The
indistinguishability considers the case where
an adversary < has query access to
(Og, f, f~1) in the real world and (O, f, f~1)
in the ideal world, and after A’s interaction, it
outputs a result y € {0,1}. We call queries to
Ogr/0O; “construction queries” and queries to
(f,f~Y) “primitive queries”. We define the
advantage function as

Advlrzzl;edSponge (dq)
= |[Pr[A%RS ST = 1]
— Pr[A%S T = 1]).
We denote g and Q respectively as the
number of construction and primitive queries.

1. MODEL THE SECURITY OF THE
SPONGE CONSTRUCION

In [12], the authors evaluated the
indistinguishability of the Sponge
construction when an adversary was able to
query the Sponge construction and the
underlying function f. Then, in the ideal
world besides the oracle RO, [12] built
another component with the same interface as
f. For the components to be hard
to distinguish, it should simulate the behavior
of a random permutation of the same width as
f. For this reason it is called a simulator,
denoted P.
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In addition, we have an additional
constraint when an adversary queries to the
real world (the Sponge construction and its
underlying function f), he the adversary can
verify whether the responses to the queries are
Sponge-consistent or not. The Sponge-
consistent means that: the result for a
construction query will be the same as the
answer when we simulate the Sponge
construction by querying directly to f. In
particular, let M be a message, if we make a
construction query (M, z) then we receive Z.
In the other hand, the message M after
padding will have the form: P =
M||pad[r](JM]). Then, we can compute the
jth block of Z by querying to the function f:
Z; = absorb(P||0™). For the ideal world to
be hard to distinguish from the real world it
shall also behave sponge-consistent. For that
reason, the simulator may have query access
to the random oracle RO for satisfying
sponge-consistency.

Before going into the specific definition of
the simulator P we recall some symbols. In the
Sponge graph, we define the set of rooted
supernodes R as the subset of Z$ containing 0¢
and all the supernodes accessible from it
through the supernode graph. We say that a
node s = (5, 8) is rooted if $ € R. Let O be the
set of supernodes with an outgoing edge.

End if
Return the node t at the end of the outgoing edge from s

Interface P~1, taking node s as input
If node s has no incoming edge then

Choose t randomly and uniformly

Choose £ randomly and uniformly from ZS\R and such
that £]|£ has no outgoing edge yet

Lett =¢t||f

Add an edge fromt to s
End if
Return the node t at the beginning of the incoming edge
into s

Algorithm 2 (see algorithm 9, [12]): The simulator P

Interface P!, taking node s as input.
If node s has no outgoing edge then
If node s is rooted AND R U 0 # Z$ (no saturation)
then
Construct path to t: find path to s, append 5 and call the
result P
Write P as P = P'0"/ where P’ does not end with 0"
if P’ can be unpadded into M then
Assign to t the value Z; with Z = RO(M, jr)
Else
Choose t randomly and uniformly
end if
Choose £ randomly and uniformly form Z5\ (R U 0)
and such that £||£ has no incoming edge yet
Lett = ||t
Else
Choose t randomly and uniformly from all nodes that
have no incoming edge yet
End if
Add an edge from s to t

Then, [12] considered the advantage of an

adversary when distinguishing the two
following world.

Real world. It contains the Sponge
construction and the underlying random

permutation f. The adversary can make queries
to the Sponge construction, the permutation f
and 1.

Ideal world. It contains the random oracle
RO and the simulator P. The adversary can
make queries to P and P71,

We define the RO differentiating advantage
as

Advind

Sponge(c/q) = |PI‘ [qupongef,f‘fﬂ]

_ Pr[dqﬂw,?,:v-l _ 1]|
Theorem 1 (Theorem 9, [12]). The RO
differentiating advantage of the Sponge
construction calling the random permutation

i+1
f is upper bound by 1 — [TV (;—ﬁC) with

e
N is the number of fresh calls to f.
In the paper [12], N was denoted by the cost

of the queries. However, in our security model,
it is the number of fresh calls to f.

IV. OUREVALUATION FOR THE
SECURITY OF THE KEYSPONGE

In this section, we will evaluate the PRF-
security of the KeyedSponge construction by
using Theorem 1 which states about the RO
differentiating advantage of the Sponge
construction.

Proposition 1. Let A be an adversary
making at most g construction queries and at
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most Q primitive queries. Then, the PRF-
security of the KeyedSponge construction
calling the random permutation f is upper
bound by:

2 2
prf Q Q N
Advg, (A) < xtoart oo
where N is the number of fresh calls to f in

both query types.

Proof. This result will be proved by
reduction. It means that we will prove the
security of the KeyedSponge construction
through the security of the Sponge construction
by constructing an adversary B which against
the Sponge construction from the adversary A.
First, B chooses a key K randomly and
uniformly from {0,1}*, and it remains the same
throughout the process (A does no K). If A
makes a construction query (M,z) then B
makes the construction query (K||M,z) to its
oracle. If A makes the primitive query X then
B also makes the primitive query X. The
adversary B returns to A the value that he
receives. Final, after making the queries, if A
returns a bit y € {0,1} then B also returns the
bit y. This means that, if A4 thinks that the
oracles, which he interacted, is the real world,
then B also thinks that the oracles, which he
interacted, is the real world, and vice versa.

Let Pr[A™a = 1] or Pr[A!el = 1] be
the probability that A returns 1 when he is used
as a subroutine of B, where the oracle that B is
interacted is real or ideal world. We have:

PrlAreal = 1] = Pr[BSPOngf ST 1]

and
Pr[Aded! 5 1] = Pr[BROPP™ = 1].

In the other hand, in the real world, the
result that A receives for the construction query
(M, z) is Sponge/ (K||M, z) =
KeyedSponge£ (M, z). This means that the view
that A runs as a subroutine of B same the view
that A runs against the KeyedSponge
construction. We have,

Pr[A™ = 1] = Pr[A%// " = 1],

Now, we consider when B accesses into the
ideal model. The result that A receives for the
22 No 2.CS (10) 2019

construction query (M, z) is RO(K||M, z). It is
a z-bit randomly and uniformly string. This is
identical when A runs against the KeyedSponge
construction. For primitive queries X, the result
that A receives from B is P(X) or P~1(X). So,
we need evaluate the difference between a
random permutation f and the simulator 2.

Lemma 1 (Lemma 5, [12]). The advantage of
an adversary in distinguishing f and P with
the number of queries Q < 2¢ is upper
bounded by:

i+1

. [
l

(The proof of this lemma is presented in [12]).

When @ is significantly smaller than 2¢, the
above bound can be simplified to Q2/2¢*1.
Indeed, using the 1 — x = e™* approximation,
we have

Q-1 i+1

1—[ ==
log ;

i=0 1-_'2r+c

Q-1

i+1

=2 [log1-)
i=0

l
~log (1 - 2r+6)]

_ v0-1 i+1 i
- Zi=0 [__ + 2r+c]
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_ 0+
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Continue with the case that B accesses into
the ideal model. We can see that, if A runs
against the KeyedSponge construction then
RO(M,z) and f(X) (or f~1(X)) do not have
any relationship. When A runs as a subroutine
of B, the values that he receives for the
construction queries and the primitive queries
are RO(K||M,z) and P(X) (or P~1(X)). Note
that the simulator P satisfies Sponge-consistent:
the result for a construction query to RO will be
the same as the answer when we simulate by
querying directly to P. However, this only
happens when the adversary A guesses the key
K among primitive queries. The probability of it
is Q/2k.

Thus, in the case that B accesses into the ideal
model, we have

Pr[BROPPT" = 1] — Pr[A% /T = 1]
Q  Q°
< F + ScH
From above arguments we have

prf
AdVKeySponge

(A)
= Pr[ AR/ = 1]
— Pr[A% S = 1]
< pr| BSPonee’ S 5 1
— Pr[BROPPT = 1] + ZQ—k
QZ

+ 2c+1

< Ad ind B Q QZ
= VSponge( )+ ﬁ + F
Q QZ NZ
= 2k + 2c+1 + 2c+1’

where N is the number of fresh call to f
when B making the construction and primitive
queries. However, N is also the number of fresh
call to f when A making the construction and
primitive queries. Indeed, for the construction
query M of A or K||M of B, the oracle of A
and B both compute Sponge’ (K||M, z); for the
primitive query X, both of them compute

f(X).m

V.CONCLUSION

In this paper, the security of the
KeyedSponge construction has been evaluated
by a new way. We have proved the security of
the KeyedSponge construction based on the
security of the Sponge construction by
reduction method. However, our indirect proof
lead to the security bound is not as good as the
result in the direct way of Guido Bertoni.
Therefore, closing this gap will still be an open
problem in the future.
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