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Abstract— In this paper, we present a new 

proof for the security of keyed Sponge. Our 

method is built on the previous result about the 

indistinguishability of the Sponge construction. 

Following this approach, we can see the strong 

relationship between the security of keyed Sponge 

and its original version. 

Tóm tắt— Trong bài báo này, chúng tôi đưa ra 

một chứng minh mới cho độ an toàn của cấu trúc 

Sponge có khóa. Phương pháp của chúng tôi sử 

dụng kết quả trước đó về tính không phân biệt 

được của cấu trúc Sponge. Theo cách tiếp cận 

này, chúng ta có thể thấy mối liên hệ chặt chẽ về 

độ an toàn của cấu trúc Sponge có khóa và phiên 

bản nguyên thủy của nó. 

Keywords—  Sponge construction, keyed 

Sponge construction, ideal compression function 

model, PRF security. 

Từ khóa— Cấu trúc Sponge, Cấu trúc Sponge 

có khóa, mô hình hàm nén lý tưởng, độ an toàn 

PRF. 

I. INTRODUCTION 

Since its introduction, the Sponge 

construction [1] has been attracting research 

attention in the cryptography community. It is 

the fundamental of the SHA-3 standard Keccak 

[2]. In the security model of Maurer [3], Bertoni 

at el. [4] proved that the advantage in 

differentiating the sponge construction from a 

random oracle is upper bounded by 𝑂(𝑁2 2𝑐⁄ ), 
with N the number of calls to the underlying 

function f and c the capacity. 

Inspired by the introduction of keys into hash 

functions as before and the beautiful theoretical 

results of the sponge construction, designers 

presented the keyed version for it: 

Sponge(K‖M), we denote by KeyedSponge. 
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This version was proposed to build a wide 

spectrum of symmetric-key primitive: 

Reseedable pseudorandom number generator 

[5], pseudorandom function and message 

authentication codes (PRFs/MAC) [6, 7], 

extendable-output functions [8] and 

authenticated encryption modes [9]. Because of 

its wide application, the security of the 

KeyedSponge construction has been evaluated 

in many documents and now it still attracts 

interest from the cryptography community. 

Previous results 

The KeyedSponge construction has been 

previously studied by two main approaches: the 

H-coefficient technique and the Sponge graph. 

For the first method there are two outstanding 

papers: Elena Andreeva [10] and Peter Gaži 

[11]. Specifically, Elena Andreeva evaluated the 

security of keyed Sponge when the key length k 

is a multiple of r. The distinguishing advantage 

of the KeyedSponge construction under any 

adversary who makes at most q construction 

queries, and at most Q primitive queries is 

upper bounded by 
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underlying function f when he makes q 
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The distinguishing advantage of the 

KeyedSponge was estimated by Peter Gaži has 

upper bound: 

𝑂 (
𝑞2 + 𝑞𝑄 + 𝑙𝑞

2𝑏−𝑧
) +

(
𝑘
𝑟
)𝑁1

2𝑏

+min {
𝑁1

2
(
1
2
−
log2(3𝑏)

2𝑟
−
1
𝑟
)𝑘
,
𝑁1
2𝑘
+
𝑁1
2

2𝑐
}, 

where l is the maximum number of blocks in 

each construction query, z (z<r) is the fixed 

length of output and 𝑁1 = 𝑞𝑙 + 𝑄. 

 For the second method, Guido Bertoni [6] 

uses the Sponge graph to directly evaluate the 

security of the KeyedSponge construction. The 

distinguishing advantage is upper bounded by: 

𝑂 (
𝑁0
2

2𝑐
+
𝑁0𝑄

2𝑐
+
𝑄

2𝑘
). 

In our knowledge, it is the best result ever. 

Our contributions. In this paper, we give a 

new proof for the security of the KeyedSponge 

construction according to the second approach. 

We evaluate it by using the security of the 

Sponge construction. Our bound are: 

𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
, 

where N is the number of fresh calls to the 

underlying function f when adversary makes 

both construction queries and primitive queries. 

Although this result is not as tight as Guido 

Bertoni's, it shows a close relationship between 

the security of the KeyedSponge and Sponge 

construction. 

Organization of the paper. After the 

introduction, in Section 2 we present some 

preliminaries. In Section 3, we recall the 

security of the Sponge construction. In Section 4, 

we evaluate the indistinguishability of the 

KeyedSponge construction. Finally, some 

conclusions are given in Section 5.  

II. PRELIMINARIES 

We denote the set of all finite strings of 

arbitrary length by ℤ2
∗  , the set of infinite-length 

bit strings is denoted by ℤ2
∞, the concatenation of 

two strings x and y is denoted as x‖y. We let 

left𝑧(𝑥)  denote the z leftmost bits of x. We 

denote the length in bits of a message x by |x|. The 

number of r-bit blocks of x is denoted by |𝑥|𝑟. 

Random oracle. 

 Let ℛ𝒪: ℤ2
∗  → ℤ2

∞ be a random oracle 

which takes inputs of arbitrary but finite length 

and returns random infinite strings, where each 

output bit is selected uniformly and 

independently for every input M. 

We denote a call to ℛ𝒪 where the output is 

truncated to its z first bits by 𝑍 = ℛ𝒪(𝑀, 𝑧).  

Sponge construction. 

The Sponge construction determines the 

Sponge function Sponge[𝑓, 𝑝𝑎𝑑, 𝑟]with 

domain ℤ2
∗  and codomain ℤ2

∞ by using a fixed 

length underlying function f (transformation or 

permutation), a sponge-compliant padding rule 

(see [12], Definition 1) and a parameter bitrate 

r. It can return a finite-length output by taking 

its z first bits.  

The underlying function f operates on a fix 

number of bit, the width b. The state of the 

Sponge construction is b bit. First, we initialize 

the b bits of the Sponge state to zero. The input 

is padded and cut into r-bits blocks. Then it is 

processed by an absorbing phase followed by a 

squeezing phase (see Fig.1). In these phase, the 

first r bits and the remaining b-r bits of the state 

are treated differently. We let the first 𝑟 bits of 

the state as the outer part 𝑠̅, and the last 𝑐 = 𝑏 −

𝑟 bits as its inner part 𝑠̂ (𝑐 is called the 

capacity). The Sponge construction is presented 

in Fig.1. 

The Sponge construction gets as input a 

message 𝑀, a natural number 𝑧, and it outputs a 

string 𝑍 ∈ {0,1}𝑧: 

Sponge𝑓(𝑀, 𝑧) = Sponge[𝑓, 𝑝𝑎𝑑, 𝑟](𝑀, 𝑧), 

where Sponge[𝑓, 𝑝𝑎𝑑, 𝑟] is defined in 

Algorithm 1. 

 
Fig.1.  The Sponge construction 
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The absorb function. The absorb function. The 

function absorb(⋅) takes as input a message 𝑃 

with |𝑃| multiple of 𝑟 and it outputs the state 

𝑠 ∈ ℤ2
𝑏 

𝑠 = 0𝑏  

For 𝑖 = 0 to |𝑃|𝑟 − 1 do 

   𝑠 = 𝑠 ⊕ (𝑃𝑖‖0
𝑏−𝑟) 

   𝑠 = 𝑓(𝑠) 
End for 

Return 𝑠 
 

Path. 𝑃 is a path to the state 𝑠 if  𝑠 =
absorb(𝑃).  

The Sponge graph. The Sponge function can 

be represented by the Sponge graph with 

2𝑏 = 2𝑟+𝑐 nodes and 2𝑏 edges. The nodes are 

the state values and for every couple (𝑠, 𝑡) 

with 𝑡 = 𝑓(𝑠) there is a directed edge from 𝑠 

to 𝑡. From each node, there is only one 

outgoing edge. If 𝑓 is a permutation, in each 

node, there is only one incoming edge. 

These nodes can be divided by the value of 

the inner state. We call the set of all nodes 

that same inner state by a supernode. Edges 

between nodes are therefore also edges 

between supernodes. There are 2𝑐 supernodes, 

one supernode corresponds to one inner state 

value. Each supernode has 2𝑟 nodes which 

defined by the outer part 𝑠̅ of their state. 

The keyed Sponge. 

The keyed Sponge is denoted as 

KeyedSponge which gets as input a key 𝐾 ∈

{0,1}𝑘, a message 𝑀 ∈ {0,1}∗, and a natural 

number 𝑧. Then, it returns a string 𝑍 ∈ {0,1}𝑧: 

KeyedSponge𝐾
𝑓(𝑀, 𝑧) ≔ Sponge𝑓(𝐾‖𝑀, 𝑧)

= 𝑍. 

The security model. An adversary 𝒜 is an 

algorithm that is given query access to one or 

more oracle 𝒪, denoted 𝒜𝒪. Let 𝒜𝒪 = 1 be 

the event that 𝒜 returns 1 after 𝒜′𝑠 

interaction. In the security model of this 

paper, we consider the KeyedSponge 

construction is built on a random permutation 

𝑓. The PRF-security of Keyed Sponge is the 

indistinguishability between the real world 

and the ideal world. Let 𝒪𝑅 =

KeyedSponge𝐾
𝑓(⋅) with 𝐾 ←

$
{0,1}𝑘 be the 

oracle in the real world, and 𝒪𝐼 = ℛ𝒪 be the 

oracle in the ideal world. The 

indistinguishability considers the case where 

an adversary 𝒜 has query access to 

(𝒪𝑅 , 𝑓, 𝑓
−1) in the real world and (𝒪𝐼 , 𝑓, 𝑓

−1) 
in the ideal world, and after 𝒜’s interaction, it 

outputs a result 𝑦 ∈ {0,1}. We call queries to 

𝒪𝑅/𝒪𝐼 “construction queries” and queries to 

(𝑓, 𝑓−1) “primitive queries”. We define the 

advantage function as 

AdvKeyedSponge
prf (𝒜)

≔ |Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1]

− Pr[𝒜𝒪𝐼,𝑓,𝑓
−1
= 1]|. 

We denote 𝑞 and 𝑄 respectively as the 

number of construction and primitive queries. 

III. MODEL THE SECURITY OF THE 

SPONGE CONSTRUCION  

In [12], the authors evaluated the 

indistinguishability of the Sponge 

construction when an adversary was able to 

query the Sponge construction and the 

underlying function 𝑓. Then, in the ideal 

world besides the oracle ℛ𝒪, [12] built 

another component with the same interface as 

𝑓. For the components to be hard 

to distinguish, it should simulate the behavior 

of a random permutation of the same width as 

𝑓. For this reason it is called a simulator, 

denoted 𝒫. 

Algorithm 1. 𝐒𝐩𝐨𝐧𝐠𝐞[𝒇, 𝒑𝒂𝒅, 𝒓] 
Require: 𝑟 < 𝑏 

Interface: 𝑍 = 𝑠𝑝𝑜𝑛𝑔𝑒(𝑀, 𝑧) with 𝑀 ∈ ℤ2
∗ , z > 0 and 

𝑍 ∈ ℤ2
𝑧. 

𝑃 = 𝑀||𝑝𝑎𝑑[𝑟](|𝑀|) 
𝑠 = 0𝑏 
for i = 0 to  |𝑃|𝑟 − 1 do 

𝑠 = 𝑠 ⊕ (𝑃𝑖||0
𝑏−𝑟) 

𝑠 = 𝑓(𝑠) 
end for 

𝑇 = ⌊𝑠⌋𝑟 
while |𝑇| < 𝑧 do 

𝑠 = 𝑓(𝑠) 
𝑇 = 𝑇||leftz(𝑠) 

end while 

return 𝑍 = leftz(𝑇) 



Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin 

 

       No 2.CS (10) 2019   21 

  

In addition, we have an additional 

constraint when an adversary queries to the 

real world (the Sponge construction and its 

underlying function 𝑓), he the adversary can 

verify whether the responses to the queries are 

Sponge-consistent or not. The Sponge-

consistent means that: the result for a 

construction query will be the same as the 

answer when we simulate the Sponge 

construction by querying directly to 𝑓. In 

particular, let 𝑀 be a message, if we make a 

construction query (𝑀, 𝑧) then we receive 𝑍. 

In the other hand, the message 𝑀 after 

padding will have the form: 𝑃 =
𝑀‖pad[𝑟](|𝑀|). Then, we can compute the 

𝑗th block of 𝑍 by querying to the function 𝑓: 

𝑍𝑗 = absorb̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑃‖0𝑟𝑗).  For the ideal world to 

be hard to distinguish from the real world it 

shall also behave sponge-consistent. For that 

reason, the simulator may have query access 

to the random oracle ℛ𝒪 for satisfying 

sponge-consistency. 

Before going into the specific definition of 

the simulator 𝒫 we recall some symbols. In the 

Sponge graph, we define the set of rooted 

supernodes ℛ as the subset of ℤ2
𝑐  containing 0𝑐 

and all the supernodes accessible from it 

through the supernode graph. We say that a 

node 𝑠 = (𝑠̅, 𝑠̂) is rooted if 𝑠̂ ∈ ℛ. Let 𝑂 be the 

set of supernodes with an outgoing edge. 

 

Algorithm 2 (see algorithm 9, [12]): The simulator 𝒫 

Interface 𝒫1, taking node 𝑠 as input. 

If node 𝑠 has no outgoing edge then 

  If node 𝑠 is rooted AND ℛ ∪ 𝑂 ≠ ℤ2
𝑐  (no saturation) 

then 

    Construct path to 𝑡: find path to 𝑠, append 𝑠̅ and call the 

result 𝑃 

    Write 𝑃 as 𝑃 = 𝑃′0𝑟𝑗 where 𝑃′ does not end with 0𝑟 

    if 𝑃′ can be unpadded into 𝑀 then 

      Assign to 𝑡̅ the value 𝑍𝑗 with 𝑍 = ℛ𝒪(𝑀, 𝑗𝑟) 

    Else  

      Choose 𝑡̅ randomly and uniformly 

    end if 

    Choose 𝑡̂ randomly and uniformly form ℤ2
𝑐\(ℛ ∪ 𝑂) 

and such that 𝑡̅‖𝑡̂ has no incoming edge yet 

    Let 𝑡 = 𝑡̅‖𝑡̂ 
  Else 

    Choose 𝑡 randomly and uniformly from all nodes that 

have no incoming edge yet 

  End if 

  Add an edge from 𝑠 to 𝑡 

End if 

Return the node 𝑡 at the end of the outgoing edge from 𝑠 

Interface 𝒫−1, taking node 𝑠 as input 

If node 𝑠 has no incoming edge then 

  Choose 𝑡̅ randomly and uniformly 

  Choose 𝑡̂ randomly and uniformly from ℤ2
𝑐\ℛ and such 

that 𝑡̅‖𝑡̂ has no outgoing edge yet  

  Let 𝑡 = 𝑡̅‖𝑡̂ 
  Add an edge from 𝑡 to 𝑠 
End if 

Return the node 𝑡 at the beginning of the incoming edge 

into 𝑠 

Then, [12] considered the advantage of an 

adversary when distinguishing the two 

following world. 

Real world. It contains the Sponge 

construction and the underlying random 

permutation 𝑓. The adversary can make queries 

to the Sponge construction, the permutation 𝑓 

and 𝑓−1. 

Ideal world. It contains the random oracle 

ℛ𝒪 and the simulator 𝒫. The adversary can 

make queries to 𝒫 and 𝒫−1.  

We define the ℛ𝒪 differentiating advantage 

as 

AdvSponge
ind (𝒜) ≔ |Pr [𝒜Sponge𝑓,𝑓,𝑓−1]

− Pr[𝒜ℛ𝒪,𝒫,𝒫−1 = 1]| 

Theorem 1 (Theorem 9, [12]). The ℛ𝒪 

differentiating advantage of the Sponge 

construction calling the random permutation 

𝑓 is upper bound by 1 − ∏ (
1−

𝑖+1

2𝑐

1−
𝑖

2𝑟+𝑐

)𝑁−1
𝑖=0  with 

𝑁 is the number of fresh calls to 𝑓. 

In the paper [12], 𝑁 was denoted by the cost 

of the queries. However, in our security model, 

it is the number of fresh calls to 𝑓.  

IV.   OUR EVALUATION FOR THE 

SECURITY OF THE KEYSPONGE 

In this section, we will evaluate the PRF-

security of the KeyedSponge construction by 

using Theorem 1 which states about the ℛ𝒪 

differentiating advantage of the Sponge 

construction. 

Proposition 1. Let 𝒜 be an adversary 

making at most 𝑞 construction queries and at 
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most 𝑄 primitive queries. Then, the PRF-

security of the KeyedSponge construction 

calling the random permutation 𝑓 is upper 

bound by: 

Advℱ𝐾
prf(𝒜) ≤

𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
, 

where 𝑁 is the number of fresh calls to 𝑓 in 

both query types. 

Proof. This result will be proved by 

reduction. It means that we will prove the 

security of the KeyedSponge construction 

through the security of the Sponge construction 

by constructing an adversary ℬ which against 

the Sponge construction from the adversary 𝒜. 

First, ℬ chooses a key 𝐾 randomly and 

uniformly from {0,1}𝑘, and it remains the same 

throughout the process (𝒜 does no 𝐾). If 𝒜 

makes a construction query (𝑀, 𝑧) then ℬ 

makes the construction query  (𝐾‖𝑀, 𝑧) to its 

oracle.  If 𝒜 makes the primitive query 𝑋 then 

ℬ also makes the primitive query 𝑋. The 

adversary ℬ returns to 𝒜 the value that he 

receives. Final, after making the queries, if 𝒜 

returns a bit 𝑦 ∈ {0,1} then ℬ also returns the 

bit 𝑦. This means that, if 𝒜 thinks that the 

oracles, which he interacted, is the real world, 

then B also thinks that the oracles, which he 

interacted, is the real world, and vice versa. 

 Let Pr[𝒜real ⇒ 1] or Pr[𝒜ideal ⇒ 1] be 

the probability that 𝒜 returns 1 when he is used 

as a subroutine of ℬ, where the oracle that ℬ is 

interacted is real or ideal world. We have: 

Pr[𝒜real ⇒ 1] = Pr [ ℬSponge
𝑓,𝑓,𝑓−1 ⇒ 1] 

and 

Pr[𝒜ideal ⇒ 1] = Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1]. 

 In the other hand, in the real world, the 

result that 𝒜 receives for the construction query 

(𝑀, 𝑧) is Sponge𝑓(𝐾‖𝑀, 𝑧) =

KeyedSponge𝐾
𝑓(𝑀, 𝑧). This means that the view 

that 𝒜 runs as a subroutine of ℬ same the view 

that 𝒜 runs against the KeyedSponge 

construction. We have,  

Pr[𝒜real ⇒ 1] = Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1]. 

 Now, we consider when ℬ accesses into the 

ideal model. The result that 𝒜 receives for the 

construction query (𝑀, 𝑧) is ℛ𝒪(𝐾‖𝑀, 𝑧). It is 

a 𝑧-bit randomly and uniformly string. This is 

identical when 𝒜 runs against the KeyedSponge 

construction. For primitive queries 𝑋, the result 

that 𝒜 receives from ℬ is 𝒫(𝑋) or 𝒫−1(𝑋). So, 

we need evaluate the difference between a 

random permutation 𝑓 and the simulator 𝒫. 

Lemma 1 (Lemma 5, [12]). The advantage of 

an adversary in distinguishing 𝑓 and 𝒫 with 

the number of queries 𝑄 < 2𝑐 is upper 

bounded by: 

1 −∏(
1 −

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

. 

(The proof of this lemma is presented in [12]). 

When 𝑄 is significantly smaller than 2𝑐, the 

above bound can be simplified to 𝑄2/2𝑐+1. 

Indeed, using the 1 − 𝑥 ≈ 𝑒−𝑥 approximation, 

we have 

log∏(
1 −

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

= ∑ [log (1 −
𝑖 + 1

2𝑐
)

𝑄−1

𝑖=0

− log (1 −
𝑖

2𝑟+𝑐
)] 

≈ ∑ [−
𝑖 + 1

2𝑐
− (−

𝑖

2𝑟+𝑐
)]

𝑄−1

𝑖=0

 

= ∑ [−
𝑖+1

2𝑐
+

𝑖

2𝑟+𝑐
]𝑄−1

𝑖=0   

= −
𝑄(𝑄 + 1)

2𝑐+1
+
(𝑄 − 1)𝑄

2𝑟+𝑐+1
. 

Then 
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∏(
1−

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

≈ 𝑒
−
𝑄(𝑄+1)

2𝑐+1
+
(𝑄−1)𝑄
2𝑟+𝑐+1 . 

So, we have  

1 −∏(
1−

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

≈ 1 − 𝑒
−
𝑄(𝑄+1)

2𝑐+1
+
(𝑄−1)𝑄
2𝑟+𝑐+1  

≈
𝑄(𝑄 + 1)

2𝑐+1
−
(𝑄 − 1)𝑄

2𝑟+𝑐+1
= 𝑂 (

𝑄2

2𝑐+1
). 

 Continue with the case that ℬ accesses into 

the ideal model. We can see that, if 𝒜 runs 

against the KeyedSponge construction then 

ℛ𝒪(𝑀, 𝑧) and 𝑓(𝑋) (or 𝑓−1(𝑋)) do not have 

any relationship. When 𝒜 runs as a subroutine 

of ℬ, the values that he receives for the 

construction queries and the primitive queries 

are ℛ𝒪(𝐾‖𝑀, 𝑧) and 𝒫(𝑋) (or 𝒫−1(𝑋)). Note 

that the simulator 𝒫 satisfies Sponge-consistent: 

the result for a construction query to ℛ𝒪 will be 

the same as the answer when we simulate by 

querying directly to 𝒫. However, this only 

happens when the adversary 𝒜 guesses the key 

𝐾 among primitive queries. The probability of it 

is 𝑄/2𝑘. 

Thus, in the case that ℬ accesses into the ideal 

model, we have 

Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1] − Pr[𝒜𝒪𝐼,𝑓,𝑓

−1
= 1]

≤
𝑄

2𝑘
+
𝑄2

2𝑐+1
. 

From above arguments we have 

AdvKeySponge
prf (𝒜)

= Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1]

− Pr[𝒜𝒪𝐼,𝑓,𝑓
−1
= 1] 

≤ Pr [ ℬSponge
𝑓,𝑓,𝑓−1 ⇒ 1]

− Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1] +

𝑄

2𝑘

+
𝑄2

2𝑐+1
 

≤ AdvSponge
ind (ℬ) +

𝑄

2𝑘
+
𝑄2

2𝑐+1

≤
𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
, 

where 𝑁 is the number of fresh call to 𝑓 

when ℬ making the construction and primitive 

queries. However, 𝑁 is also the number of fresh 

call to 𝑓 when 𝒜 making the construction and 

primitive queries. Indeed, for the construction 

query 𝑀 of 𝒜 or 𝐾‖𝑀 of ℬ, the oracle of 𝒜 

and ℬ both compute Sponge𝑓(𝐾‖𝑀, 𝑧); for the 

primitive query 𝑋, both of them compute 

𝑓(𝑋).■ 

V. CONCLUSION 

In this paper, the security of the 

KeyedSponge construction has been evaluated 

by a new way. We have proved the security of 

the KeyedSponge construction based on the 

security of the Sponge construction by 

reduction method. However, our indirect proof 

lead to the security bound is not as good as the 

result in the direct way of Guido Bertoni. 

Therefore, closing this gap will still be an open 

problem in the future. 
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