
Journal of Science and Technology on Information Security

18 No 2.CS (10) 2019

Tuan Anh Nguyen, Bui Cuong Nguyen

Abstract— In this paper, we present a new

proof for the security of keyed Sponge. Our

method is built on the previous result about the

indistinguishability of the Sponge construction.

Following this approach, we can see the strong

relationship between the security of keyed Sponge

and its original version.

Tóm tắt— Trong bài báo này, chúng tôi đưa ra

một chứng minh mới cho độ an toàn của cấu trúc

Sponge có khóa. Phương pháp của chúng tôi sử

dụng kết quả trước đó về tính không phân biệt

được của cấu trúc Sponge. Theo cách tiếp cận

này, chúng ta có thể thấy mối liên hệ chặt chẽ về

độ an toàn của cấu trúc Sponge có khóa và phiên

bản nguyên thủy của nó.

Keywords— Sponge construction, keyed

Sponge construction, ideal compression function

model, PRF security.

Từ khóa— Cấu trúc Sponge, Cấu trúc Sponge

có khóa, mô hình hàm nén lý tưởng, độ an toàn

PRF.

I. INTRODUCTION

Since its introduction, the Sponge

construction [1] has been attracting research

attention in the cryptography community. It is

the fundamental of the SHA-3 standard Keccak

[2]. In the security model of Maurer [3], Bertoni

at el. [4] proved that the advantage in

differentiating the sponge construction from a

random oracle is upper bounded by 𝑂(𝑁2 2𝑐⁄),
with N the number of calls to the underlying

function f and c the capacity.

Inspired by the introduction of keys into hash

functions as before and the beautiful theoretical

results of the sponge construction, designers

presented the keyed version for it:

Sponge(K‖M), we denote by KeyedSponge.

This manuscript is received July 10, 2019. It is commented

on August 16, 2019 and is accepted on August 23, 2019 by

the first reviewer. It is commented on September 30, 2019

and is accepted on October 6, 2019 by the second reviewer.

This version was proposed to build a wide

spectrum of symmetric-key primitive:

Reseedable pseudorandom number generator

[5], pseudorandom function and message

authentication codes (PRFs/MAC) [6, 7],

extendable-output functions [8] and

authenticated encryption modes [9]. Because of

its wide application, the security of the

KeyedSponge construction has been evaluated

in many documents and now it still attracts

interest from the cryptography community.

Previous results

The KeyedSponge construction has been

previously studied by two main approaches: the

H-coefficient technique and the Sponge graph.

For the first method there are two outstanding

papers: Elena Andreeva [10] and Peter Gaži

[11]. Specifically, Elena Andreeva evaluated the

security of keyed Sponge when the key length k

is a multiple of r. The distinguishing advantage

of the KeyedSponge construction under any

adversary who makes at most q construction

queries, and at most Q primitive queries is

upper bounded by

𝑁0
2+2𝜇𝑄

2𝑐
+ 𝜆(𝑄) +

2(
𝑘

𝑟
)𝑄

2𝑏
,

where 𝑁0 is the number of fresh calls to the

underlying function f when he makes q

construction queries (here we let f(x) is not fresh

if it has already been made due to a prior query

to the construction) and μ is the total maximum

multiplicity (see [10]) and

𝜆(𝑄)

≤

{

𝑄

2𝑘
 if 𝑘 = 𝑟

min {
𝑄2

2𝑐+1
+
𝑄

2𝑘
,
1

2𝑏
+

𝑄

2
(
1
2
−
log2(3𝑏)

2𝑟
−
1
𝑟
)𝑘
} otherwise.

A New Proof for the Security of the Keyed

Sponge Construction in the Ideal Compression

Function Model

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 No 2.CS (10) 2019 19

The distinguishing advantage of the

KeyedSponge was estimated by Peter Gaži has

upper bound:

𝑂 (
𝑞2 + 𝑞𝑄 + 𝑙𝑞

2𝑏−𝑧
) +

(
𝑘
𝑟
)𝑁1

2𝑏

+min {
𝑁1

2
(
1
2
−
log2(3𝑏)

2𝑟
−
1
𝑟
)𝑘
,
𝑁1
2𝑘
+
𝑁1
2

2𝑐
},

where l is the maximum number of blocks in

each construction query, z (z<r) is the fixed

length of output and 𝑁1 = 𝑞𝑙 + 𝑄.

 For the second method, Guido Bertoni [6]

uses the Sponge graph to directly evaluate the

security of the KeyedSponge construction. The

distinguishing advantage is upper bounded by:

𝑂 (
𝑁0
2

2𝑐
+
𝑁0𝑄

2𝑐
+
𝑄

2𝑘
).

In our knowledge, it is the best result ever.

Our contributions. In this paper, we give a

new proof for the security of the KeyedSponge

construction according to the second approach.

We evaluate it by using the security of the

Sponge construction. Our bound are:

𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
,

where N is the number of fresh calls to the

underlying function f when adversary makes

both construction queries and primitive queries.

Although this result is not as tight as Guido

Bertoni's, it shows a close relationship between

the security of the KeyedSponge and Sponge

construction.

Organization of the paper. After the

introduction, in Section 2 we present some

preliminaries. In Section 3, we recall the

security of the Sponge construction. In Section 4,

we evaluate the indistinguishability of the

KeyedSponge construction. Finally, some

conclusions are given in Section 5.

II. PRELIMINARIES

We denote the set of all finite strings of

arbitrary length by ℤ2
∗ , the set of infinite-length

bit strings is denoted by ℤ2
∞, the concatenation of

two strings x and y is denoted as x‖y. We let

left𝑧(𝑥) denote the z leftmost bits of x. We

denote the length in bits of a message x by |x|. The

number of r-bit blocks of x is denoted by |𝑥|𝑟.

Random oracle.

 Let ℛ𝒪: ℤ2
∗ → ℤ2

∞ be a random oracle

which takes inputs of arbitrary but finite length

and returns random infinite strings, where each

output bit is selected uniformly and

independently for every input M.

We denote a call to ℛ𝒪 where the output is

truncated to its z first bits by 𝑍 = ℛ𝒪(𝑀, 𝑧).

Sponge construction.

The Sponge construction determines the

Sponge function Sponge[𝑓, 𝑝𝑎𝑑, 𝑟]with

domain ℤ2
∗ and codomain ℤ2

∞ by using a fixed

length underlying function f (transformation or

permutation), a sponge-compliant padding rule

(see [12], Definition 1) and a parameter bitrate

r. It can return a finite-length output by taking

its z first bits.

The underlying function f operates on a fix

number of bit, the width b. The state of the

Sponge construction is b bit. First, we initialize

the b bits of the Sponge state to zero. The input

is padded and cut into r-bits blocks. Then it is

processed by an absorbing phase followed by a

squeezing phase (see Fig.1). In these phase, the

first r bits and the remaining b-r bits of the state

are treated differently. We let the first 𝑟 bits of

the state as the outer part 𝑠̅, and the last 𝑐 = 𝑏 −

𝑟 bits as its inner part 𝑠̂ (𝑐 is called the

capacity). The Sponge construction is presented

in Fig.1.

The Sponge construction gets as input a

message 𝑀, a natural number 𝑧, and it outputs a

string 𝑍 ∈ {0,1}𝑧:

Sponge𝑓(𝑀, 𝑧) = Sponge[𝑓, 𝑝𝑎𝑑, 𝑟](𝑀, 𝑧),

where Sponge[𝑓, 𝑝𝑎𝑑, 𝑟] is defined in

Algorithm 1.

Fig.1. The Sponge construction

Journal of Science and Technology on Information Security

20 No 2.CS (10) 2019

The absorb function. The absorb function. The

function absorb(⋅) takes as input a message 𝑃

with |𝑃| multiple of 𝑟 and it outputs the state

𝑠 ∈ ℤ2
𝑏

𝑠 = 0𝑏

For 𝑖 = 0 to |𝑃|𝑟 − 1 do

 𝑠 = 𝑠 ⊕ (𝑃𝑖‖0
𝑏−𝑟)

 𝑠 = 𝑓(𝑠)
End for

Return 𝑠

Path. 𝑃 is a path to the state 𝑠 if 𝑠 =
absorb(𝑃).

The Sponge graph. The Sponge function can

be represented by the Sponge graph with

2𝑏 = 2𝑟+𝑐 nodes and 2𝑏 edges. The nodes are

the state values and for every couple (𝑠, 𝑡)

with 𝑡 = 𝑓(𝑠) there is a directed edge from 𝑠

to 𝑡. From each node, there is only one

outgoing edge. If 𝑓 is a permutation, in each

node, there is only one incoming edge.

These nodes can be divided by the value of

the inner state. We call the set of all nodes

that same inner state by a supernode. Edges

between nodes are therefore also edges

between supernodes. There are 2𝑐 supernodes,

one supernode corresponds to one inner state

value. Each supernode has 2𝑟 nodes which

defined by the outer part 𝑠̅ of their state.

The keyed Sponge.

The keyed Sponge is denoted as

KeyedSponge which gets as input a key 𝐾 ∈

{0,1}𝑘, a message 𝑀 ∈ {0,1}∗, and a natural

number 𝑧. Then, it returns a string 𝑍 ∈ {0,1}𝑧:

KeyedSponge𝐾
𝑓(𝑀, 𝑧) ≔ Sponge𝑓(𝐾‖𝑀, 𝑧)

= 𝑍.

The security model. An adversary 𝒜 is an

algorithm that is given query access to one or

more oracle 𝒪, denoted 𝒜𝒪. Let 𝒜𝒪 = 1 be

the event that 𝒜 returns 1 after 𝒜′𝑠

interaction. In the security model of this

paper, we consider the KeyedSponge

construction is built on a random permutation

𝑓. The PRF-security of Keyed Sponge is the

indistinguishability between the real world

and the ideal world. Let 𝒪𝑅 =

KeyedSponge𝐾
𝑓(⋅) with 𝐾 ←

$
{0,1}𝑘 be the

oracle in the real world, and 𝒪𝐼 = ℛ𝒪 be the

oracle in the ideal world. The

indistinguishability considers the case where

an adversary 𝒜 has query access to

(𝒪𝑅 , 𝑓, 𝑓
−1) in the real world and (𝒪𝐼 , 𝑓, 𝑓

−1)
in the ideal world, and after 𝒜’s interaction, it

outputs a result 𝑦 ∈ {0,1}. We call queries to

𝒪𝑅/𝒪𝐼 “construction queries” and queries to

(𝑓, 𝑓−1) “primitive queries”. We define the

advantage function as

AdvKeyedSponge
prf (𝒜)

≔ |Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1]

− Pr[𝒜𝒪𝐼,𝑓,𝑓
−1
= 1]|.

We denote 𝑞 and 𝑄 respectively as the

number of construction and primitive queries.

III. MODEL THE SECURITY OF THE

SPONGE CONSTRUCION

In [12], the authors evaluated the

indistinguishability of the Sponge

construction when an adversary was able to

query the Sponge construction and the

underlying function 𝑓. Then, in the ideal

world besides the oracle ℛ𝒪, [12] built

another component with the same interface as

𝑓. For the components to be hard

to distinguish, it should simulate the behavior

of a random permutation of the same width as

𝑓. For this reason it is called a simulator,

denoted 𝒫.

Algorithm 1. 𝐒𝐩𝐨𝐧𝐠𝐞[𝒇, 𝒑𝒂𝒅, 𝒓]
Require: 𝑟 < 𝑏

Interface: 𝑍 = 𝑠𝑝𝑜𝑛𝑔𝑒(𝑀, 𝑧) with 𝑀 ∈ ℤ2
∗ , z > 0 and

𝑍 ∈ ℤ2
𝑧.

𝑃 = 𝑀||𝑝𝑎𝑑[𝑟](|𝑀|)
𝑠 = 0𝑏
for i = 0 to |𝑃|𝑟 − 1 do

𝑠 = 𝑠 ⊕ (𝑃𝑖||0
𝑏−𝑟)

𝑠 = 𝑓(𝑠)
end for

𝑇 = ⌊𝑠⌋𝑟
while |𝑇| < 𝑧 do

𝑠 = 𝑓(𝑠)
𝑇 = 𝑇||leftz(𝑠)

end while

return 𝑍 = leftz(𝑇)

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 No 2.CS (10) 2019 21

In addition, we have an additional

constraint when an adversary queries to the

real world (the Sponge construction and its

underlying function 𝑓), he the adversary can

verify whether the responses to the queries are

Sponge-consistent or not. The Sponge-

consistent means that: the result for a

construction query will be the same as the

answer when we simulate the Sponge

construction by querying directly to 𝑓. In

particular, let 𝑀 be a message, if we make a

construction query (𝑀, 𝑧) then we receive 𝑍.

In the other hand, the message 𝑀 after

padding will have the form: 𝑃 =
𝑀‖pad[𝑟](|𝑀|). Then, we can compute the

𝑗th block of 𝑍 by querying to the function 𝑓:

𝑍𝑗 = absorb̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑃‖0𝑟𝑗). For the ideal world to

be hard to distinguish from the real world it

shall also behave sponge-consistent. For that

reason, the simulator may have query access

to the random oracle ℛ𝒪 for satisfying

sponge-consistency.

Before going into the specific definition of

the simulator 𝒫 we recall some symbols. In the

Sponge graph, we define the set of rooted

supernodes ℛ as the subset of ℤ2
𝑐 containing 0𝑐

and all the supernodes accessible from it

through the supernode graph. We say that a

node 𝑠 = (𝑠̅, 𝑠̂) is rooted if 𝑠̂ ∈ ℛ. Let 𝑂 be the

set of supernodes with an outgoing edge.

Algorithm 2 (see algorithm 9, [12]): The simulator 𝒫

Interface 𝒫1, taking node 𝑠 as input.

If node 𝑠 has no outgoing edge then

 If node 𝑠 is rooted AND ℛ ∪ 𝑂 ≠ ℤ2
𝑐 (no saturation)

then

 Construct path to 𝑡: find path to 𝑠, append 𝑠̅ and call the

result 𝑃

 Write 𝑃 as 𝑃 = 𝑃′0𝑟𝑗 where 𝑃′ does not end with 0𝑟

 if 𝑃′ can be unpadded into 𝑀 then

 Assign to 𝑡̅ the value 𝑍𝑗 with 𝑍 = ℛ𝒪(𝑀, 𝑗𝑟)

 Else

 Choose 𝑡̅ randomly and uniformly

 end if

 Choose 𝑡̂ randomly and uniformly form ℤ2
𝑐\(ℛ ∪ 𝑂)

and such that 𝑡̅‖𝑡̂ has no incoming edge yet

 Let 𝑡 = 𝑡̅‖𝑡̂
 Else

 Choose 𝑡 randomly and uniformly from all nodes that

have no incoming edge yet

 End if

 Add an edge from 𝑠 to 𝑡

End if

Return the node 𝑡 at the end of the outgoing edge from 𝑠

Interface 𝒫−1, taking node 𝑠 as input

If node 𝑠 has no incoming edge then

 Choose 𝑡̅ randomly and uniformly

 Choose 𝑡̂ randomly and uniformly from ℤ2
𝑐\ℛ and such

that 𝑡̅‖𝑡̂ has no outgoing edge yet

 Let 𝑡 = 𝑡̅‖𝑡̂
 Add an edge from 𝑡 to 𝑠
End if

Return the node 𝑡 at the beginning of the incoming edge

into 𝑠

Then, [12] considered the advantage of an

adversary when distinguishing the two

following world.

Real world. It contains the Sponge

construction and the underlying random

permutation 𝑓. The adversary can make queries

to the Sponge construction, the permutation 𝑓

and 𝑓−1.

Ideal world. It contains the random oracle

ℛ𝒪 and the simulator 𝒫. The adversary can

make queries to 𝒫 and 𝒫−1.

We define the ℛ𝒪 differentiating advantage

as

AdvSponge
ind (𝒜) ≔ |Pr [𝒜Sponge𝑓,𝑓,𝑓−1]

− Pr[𝒜ℛ𝒪,𝒫,𝒫−1 = 1]|

Theorem 1 (Theorem 9, [12]). The ℛ𝒪

differentiating advantage of the Sponge

construction calling the random permutation

𝑓 is upper bound by 1 − ∏ (
1−

𝑖+1

2𝑐

1−
𝑖

2𝑟+𝑐

)𝑁−1
𝑖=0 with

𝑁 is the number of fresh calls to 𝑓.

In the paper [12], 𝑁 was denoted by the cost

of the queries. However, in our security model,

it is the number of fresh calls to 𝑓.

IV. OUR EVALUATION FOR THE

SECURITY OF THE KEYSPONGE

In this section, we will evaluate the PRF-

security of the KeyedSponge construction by

using Theorem 1 which states about the ℛ𝒪

differentiating advantage of the Sponge

construction.

Proposition 1. Let 𝒜 be an adversary

making at most 𝑞 construction queries and at

Journal of Science and Technology on Information Security

22 No 2.CS (10) 2019

most 𝑄 primitive queries. Then, the PRF-

security of the KeyedSponge construction

calling the random permutation 𝑓 is upper

bound by:

Advℱ𝐾
prf(𝒜) ≤

𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
,

where 𝑁 is the number of fresh calls to 𝑓 in

both query types.

Proof. This result will be proved by

reduction. It means that we will prove the

security of the KeyedSponge construction

through the security of the Sponge construction

by constructing an adversary ℬ which against

the Sponge construction from the adversary 𝒜.

First, ℬ chooses a key 𝐾 randomly and

uniformly from {0,1}𝑘, and it remains the same

throughout the process (𝒜 does no 𝐾). If 𝒜

makes a construction query (𝑀, 𝑧) then ℬ

makes the construction query (𝐾‖𝑀, 𝑧) to its

oracle. If 𝒜 makes the primitive query 𝑋 then

ℬ also makes the primitive query 𝑋. The

adversary ℬ returns to 𝒜 the value that he

receives. Final, after making the queries, if 𝒜

returns a bit 𝑦 ∈ {0,1} then ℬ also returns the

bit 𝑦. This means that, if 𝒜 thinks that the

oracles, which he interacted, is the real world,

then B also thinks that the oracles, which he

interacted, is the real world, and vice versa.

 Let Pr[𝒜real ⇒ 1] or Pr[𝒜ideal ⇒ 1] be

the probability that 𝒜 returns 1 when he is used

as a subroutine of ℬ, where the oracle that ℬ is

interacted is real or ideal world. We have:

Pr[𝒜real ⇒ 1] = Pr [ℬSponge
𝑓,𝑓,𝑓−1 ⇒ 1]

and

Pr[𝒜ideal ⇒ 1] = Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1].

 In the other hand, in the real world, the

result that 𝒜 receives for the construction query

(𝑀, 𝑧) is Sponge𝑓(𝐾‖𝑀, 𝑧) =

KeyedSponge𝐾
𝑓(𝑀, 𝑧). This means that the view

that 𝒜 runs as a subroutine of ℬ same the view

that 𝒜 runs against the KeyedSponge

construction. We have,

Pr[𝒜real ⇒ 1] = Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1].

 Now, we consider when ℬ accesses into the

ideal model. The result that 𝒜 receives for the

construction query (𝑀, 𝑧) is ℛ𝒪(𝐾‖𝑀, 𝑧). It is

a 𝑧-bit randomly and uniformly string. This is

identical when 𝒜 runs against the KeyedSponge

construction. For primitive queries 𝑋, the result

that 𝒜 receives from ℬ is 𝒫(𝑋) or 𝒫−1(𝑋). So,

we need evaluate the difference between a

random permutation 𝑓 and the simulator 𝒫.

Lemma 1 (Lemma 5, [12]). The advantage of

an adversary in distinguishing 𝑓 and 𝒫 with

the number of queries 𝑄 < 2𝑐 is upper

bounded by:

1 −∏(
1 −

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

.

(The proof of this lemma is presented in [12]).

When 𝑄 is significantly smaller than 2𝑐, the

above bound can be simplified to 𝑄2/2𝑐+1.

Indeed, using the 1 − 𝑥 ≈ 𝑒−𝑥 approximation,

we have

log∏(
1 −

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

= ∑ [log (1 −
𝑖 + 1

2𝑐
)

𝑄−1

𝑖=0

− log (1 −
𝑖

2𝑟+𝑐
)]

≈ ∑ [−
𝑖 + 1

2𝑐
− (−

𝑖

2𝑟+𝑐
)]

𝑄−1

𝑖=0

= ∑ [−
𝑖+1

2𝑐
+

𝑖

2𝑟+𝑐
]𝑄−1

𝑖=0

= −
𝑄(𝑄 + 1)

2𝑐+1
+
(𝑄 − 1)𝑄

2𝑟+𝑐+1
.

Then

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 No 2.CS (10) 2019 23

∏(
1−

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

≈ 𝑒
−
𝑄(𝑄+1)

2𝑐+1
+
(𝑄−1)𝑄
2𝑟+𝑐+1 .

So, we have

1 −∏(
1−

𝑖 + 1
2𝑐

1 −
𝑖

2𝑟+𝑐

)

𝑄−1

𝑖=0

≈ 1 − 𝑒
−
𝑄(𝑄+1)

2𝑐+1
+
(𝑄−1)𝑄
2𝑟+𝑐+1

≈
𝑄(𝑄 + 1)

2𝑐+1
−
(𝑄 − 1)𝑄

2𝑟+𝑐+1
= 𝑂 (

𝑄2

2𝑐+1
).

 Continue with the case that ℬ accesses into

the ideal model. We can see that, if 𝒜 runs

against the KeyedSponge construction then

ℛ𝒪(𝑀, 𝑧) and 𝑓(𝑋) (or 𝑓−1(𝑋)) do not have

any relationship. When 𝒜 runs as a subroutine

of ℬ, the values that he receives for the

construction queries and the primitive queries

are ℛ𝒪(𝐾‖𝑀, 𝑧) and 𝒫(𝑋) (or 𝒫−1(𝑋)). Note

that the simulator 𝒫 satisfies Sponge-consistent:

the result for a construction query to ℛ𝒪 will be

the same as the answer when we simulate by

querying directly to 𝒫. However, this only

happens when the adversary 𝒜 guesses the key

𝐾 among primitive queries. The probability of it

is 𝑄/2𝑘.

Thus, in the case that ℬ accesses into the ideal

model, we have

Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1] − Pr[𝒜𝒪𝐼,𝑓,𝑓

−1
= 1]

≤
𝑄

2𝑘
+
𝑄2

2𝑐+1
.

From above arguments we have

AdvKeySponge
prf (𝒜)

= Pr[𝒜𝒪𝑅,𝑓,𝑓
−1
= 1]

− Pr[𝒜𝒪𝐼,𝑓,𝑓
−1
= 1]

≤ Pr [ℬSponge
𝑓,𝑓,𝑓−1 ⇒ 1]

− Pr[ℬℛ𝒪,𝒫,𝒫
−1
⇒ 1] +

𝑄

2𝑘

+
𝑄2

2𝑐+1

≤ AdvSponge
ind (ℬ) +

𝑄

2𝑘
+
𝑄2

2𝑐+1

≤
𝑄

2𝑘
+
𝑄2

2𝑐+1
+
𝑁2

2𝑐+1
,

where 𝑁 is the number of fresh call to 𝑓

when ℬ making the construction and primitive

queries. However, 𝑁 is also the number of fresh

call to 𝑓 when 𝒜 making the construction and

primitive queries. Indeed, for the construction

query 𝑀 of 𝒜 or 𝐾‖𝑀 of ℬ, the oracle of 𝒜

and ℬ both compute Sponge𝑓(𝐾‖𝑀, 𝑧); for the

primitive query 𝑋, both of them compute

𝑓(𝑋).■

V. CONCLUSION

In this paper, the security of the

KeyedSponge construction has been evaluated

by a new way. We have proved the security of

the KeyedSponge construction based on the

security of the Sponge construction by

reduction method. However, our indirect proof

lead to the security bound is not as good as the

result in the direct way of Guido Bertoni.

Therefore, closing this gap will still be an open

problem in the future.

REFERENCES

[1]. Bertoni, G., et al. Sponge functions. in ECRYPT

hash workshop. 2007. Citeseer.

[2]. Bertoni, G., et al., Keccak specifications.

Submission to NIST (round 2), 2009: p. 320-337.

[3]. Maurer, U., R. Renner, and C. Holenstein.

Indifferentiability, impossibility results on

reductions, and applications to the random oracle

methodology. in Theory of cryptography

conference. 2004. Springer.

[4]. Bertoni, G., et al. On the indifferentiability of the

sponge construction. in Annual International

Conference on the Theory and Applications of

Cryptographic Techniques. 2008. Springer.

[5]. Bertoni, G., et al. Sponge-based pseudo-random

number generators. in International Workshop on

Cryptographic Hardware and Embedded Systems.

2010. Springer.

[6]. Bertoni, G., et al. On the security of the keyed

sponge construction. in Symmetric Key Encryption

Workshop. 2011.

[7]. Bertoni, G., et al., Permutation-based encryption,

authentication and authenticated encryption.

Directions in Authenticated Ciphers, 2012.

[8]. Dworkin, M.J., SHA-3 standard: Permutation-

based hash and extendable-output functions. 2015.

Journal of Science and Technology on Information Security

24 No 2.CS (10) 2019

[9]. Bertoni, G., et al. Duplexing the sponge: single-

pass authenticated encryption and other

applications. in International Workshop on Selected

Areas in Cryptography. 2011. Springer.

[10]. Andreeva, E., et al. Security of keyed sponge

constructions using a modular proof approach. in

International Workshop on Fast Software

Encryption. 2015. Springer.

[11]. Gaži, P., K. Pietrzak, and S. Tessaro. The exact

PRF security of truncation: tight bounds for keyed

sponges and truncated CBC. in Annual Cryptology

Conference. 2015. Springer.

[12]. Guido, B., et al., Cryptographic sponge functions. 2011.

ABOUT THE AUTHORS

B.S. Tuan Anh Nguyen

Email: tuananhnghixuan@gmail. com

The Workplace: Institute of

Cryptography Science and

Technology, Government

Information Security Committee.

The education process: Graduated

in Mathematic, VNU University of

Science, 2016.

Subjects: block cipher, hash function, message

authentication code, tweakable block cipher

PhD. Bui Cuong Nguyen

Email:nguyenbuicuong@gmail.

com

The Workplace: Institute of

Cryptography Science and

Technology, Government

Information Security

Committee.

The education process:

Graduated in Mathematic, Hanoi National University

of Education, 2004. Graduated Master in Mathematics,

VNU University of Science, 2007. Graduated PhD in

Cryptography, Academy of military science and

technology, 2018.

Subjects: block cipher, hash function, message

authentication code, tweakable block cipher

