
Journal of Science and Technology on Information Security

 Số 1.CS (09) 2019 20

Chi Luan Le

Abstract— This paper proposes a method for

modeling and verifying UML 2.0 sequence

diagrams using SPIN/PROMELA. The key idea

of this method is to generate models that specify

behaviors of each object in the given UML 2.0

sequence diagrams. In this paper, I/O automata

are used as the models to maintain the interaction

among objects. This work also proposes a

mechanism to translate these models into

PROMELA to use SPIN for checking the

correctness of the system. By ensuring software

design correctness, several properties can be

guaranteed such as safety, stability, and the fact

that no vulnerability is left. A support tool for

this method is presented and tested with some

particular systems to show the accuracy and

effectiveness of the proposed method. This

approach has promising potential to be applied

in practice.

Tóm tắt— Bài báo này đề xuất một phương

pháp để mô hình hóa và kiểm chứng biểu đồ

trình tự UML 2.0 sử dụng SPIN/ PROMELA. Ý

tưởng chính của phương pháp là xây dựng các

mô hình mô tả hành vi của từng đối tượng trong

biểu đồ trình tự UML 2.0. Các mô hình này biểu

diễn dưới dạng các ôtômát vào/ra nhằm giữ

nguyên tính tương tác giữa các đối tượng. Nghiên

cứu đưa ra một kỹ thuật hỗ trợ chuyển đổi các

mô hình này thành các đặc tả PROMELA để

cung cấp cho bộ công cụ SPIN nhằm kiểm chứng

tính đúng đắn của các biểu đồ tuần tự. Bằng cách

đảm bảo tính chính xác của thiết kế phần mềm,

một số thuộc tính có thể được đảm bảo như an

toàn, ổn định và thực tế là không còn lỗ hổng nào.

Một công cụ hỗ trợ cho phương pháp đề xuất

cũng được cài đặt và thực nghiệm với một số hệ

thống điển hình nhằm minh chứng cho tính đúng

đắn, hiệu quả và dễ sử dụng. Cách tiếp cận này

hứa hẹn sẽ được áp dụng trong thực tế.

Keywords— Model Checking; Model

Generation; SPIN/PROMELA; I/O Automata;

Sequence Diagrams.

This manuscript is received on August 1, 2019. It is

commented on August 11, 2019 and is accepted on August

18, 2019 by the first reviewer. It is commented on August 16,

2019 and is accepted on August 22, 2019 by the second

reviewer.

Từ khóa— Kiểm định mô hình; Tạo lập mô

hình; SPIN/PROMELA; ô tô mát vào ra; biểu đồ

tuần tự.

I. INTRODUCTION

Software verification in particular and

software quality assurant in general play a

significant role in software development

process, specially when it is crucial to detect

flaws before they can be exploited. The

verification process can detect errors in early

phase of the software lifecycle. Therefore, it

greatly reduces bug-fixing, maintaining cost,

and efforts in software quality assurant.

Currently, one of the most popular methods for

software verification is model checking [3, 2].

A prerequisite for using model checking in

software verification is to construct models

describing behaviors of the system under

checking. However, most of the current

researches about model checking generally

assume the availability and correctness of these

models. This assumption may not always hold

in practice due to the lack of documentations,

model errors, bug-fixing, etc.

Generating models from UML diagrams and

model checking them have been known as a

potential solution to deal with the above

problems. The unified modeling language has

become a standard for modeling software

architectures and designs. Currently, many

techniques have been proposed for models

generation and verification of UML diagrams

[1, 6, 7, 8 ,9, 11, 12, 13, 15, 16, 18]. Though,

most of these approaches targeting sequence

diagrams only use an old version of UML.

Some methods are targeting UML 2.0.

However, they do not handle all newly

introduced combined fragments and nested

fragments. They only focus on the basic

concepts (loop, conditional, etc). In addition,

some methods acquire state-space explosion

when performing verification. This leads to the

limitation in handling large, complex sequence

A Method for Modeling and Verifying of

UML 2.0 Sequence Diagrams using SPIN

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

Số 1.CS (09) 2019 21

diagrams. Moreover, the interaction among

objects is understated, while it is an important

property of sequence diagrams.

To overcome these drawbacks, the work in

[18, 10] proposes a different approach which

uses a special I/O automata to describe

behaviors of one object in sequence diagrams.

However, in [18, 10], the method for using

these generated models in model checking is

not clearly described. In practice, there is no

software verification tool which supports

I/O automata.

The main contribution of this work is to

provide an efficient mechanism for generation

of I/O automata into PROMELA [21] processes.

SPIN [20] uses these processes and LTL (Linear

Temporal Logic) properties as input to provide

verification result. The combination of this

method with methods in [18, 10] becomes a

complete process for specification and

verification of UML 2.0 sequence diagrams

[19]. The scope of this paper is that the design

of software components represented by UML

2.0 sequence diagrams because this is the most

detailed behavioral diagram in UML ones. By

employing the proposed method, software is

guaranteed to contain no error in both functional

and security aspects according to its design.

This paper is organized as follows. Related

works are presented in section 2. Section 3

describes some improvements in the translation

of combined fragments into automata. Section 4

is about the generation of PROMELA file from

I/O automata. Support tool and experimental

results are presented in section 5. Finally, we

conclude the paper and propose some future

works in Section 6.

II. RELATED WORKS

Currently, there are many works which are

proposed in verification of UML diagrams.

Focusing only about sequence diagrams, we can

refer to [5, 7, 9, 10, 12, 18].

In [9], Knapp et. al proposes an approach

for translating sequence diagrams into

interaction automata and uses SPIN as the

model checker. This approach does not support

all of UML 2.0 combined fragments. In [7],

Duong et. al suggests a method of using regular

expressions for model generation. Then, the

method verifies the generated models by using

assume-guarantee verification [4]. However,

these models are nondeterministic and the

optimization is complex. A mechanism for

translation of sequence diagrams into state-

machine diagrams is proposed in [5] by Grønmo

et. al to take full advantages of state-machine

diagrams in verification. The common

drawback of [5, 7, 9] is using only one model to

describe behaviors of the whole system. This

leads to the state-space explosion problem. The

complexity of the model affects the

performance of verification tools.

Furthermore, in these approaches, objects in

sequence diagrams are not explicitly

described. Last but not least, the interaction

among objects is ambiguous.

A method to directly specify sequence

diagrams by PROMELA is described in [12]. In

this method, an object in sequence diagrams is

transformed into a PROMELA process, their

sending and receiving events are represented by

PROMELA operators. It may overcome the

drawbacks of above approaches. However, the

authors do not provide a clear description and

do not handle nested fragments. Moreover, due

to the lack of models as an intermediary role,

this method is not flexible, and cannot be used

with other verification tools than SPIN.

Furthermore, the result also cannot be reused in

other phases of software development process.

The work in [18] introduces a different

approach. Each object in sequence diagrams is

specified by an I/O automaton. Therefore, the

whole system is represented by a set of

automata. The interaction among objects is

represented by send/receive events in each

automaton. Authors of [10] improve this

method to support more UML 2.0 and nested

fragments. However, the use of generated

models in model checking is not provided.

In [6] and [8, 11, 13, 15, 16], the

translations into PROMELA for activity

diagrams and state machine diagrams are

presented, respectively. Those works might be

used with the process proposed in this paper

when systems are designed by different types

of diagrams.

Journal of Science and Technology on Information Security

 Số 1.CS (09) 2019 22

III. TRANSLATION OF SEQUENCE

DIAGRAMS INTO EDTFA

This paper uses the approach proposed in

[18] and the improved method in [10] to specify

sequence diagrams by event deterministic finite

automata (EDTFA). The approach supports

most of UML 2.0 fragments and nested

fragments. The approach also describes the

interactions among objects.

Though to accurately describe behaviors

of objects in the form of PROMELA process,

it is necessary to perform some modification

to the algorithm of translation of combined

fragments into EDTFA, alt, opt and loop

fragments in particular.

From [18], we have the definition of objects

in sequence diagrams and event deterministic

finite automata.

Definition 1: Objects in Sequence

Diagram: An object is a 6-tuple, O= (E, FG,

OP, C, num, frag), where:

 E is a finite non-empty set of sending and

receiving events of the object, |E| is the

number of events in E,

 FG is a finite set of fragments of the

objects,

 OP is a finite set of operands,

 C is a finite set of guard conditions,

 num is a list representing the serial

number of events, from 0 to n,

 frag is a function from E to F.

Definition 2: Event Deterministic Finite

Automata: EDTFA are a 7-tuple, M= (Q, CM,

EM, , , q0, F), where

 Q is a finite set of states,

 CM is a finite set of guard conditions of

fragments, a guard condition can be also

empty, denoted by ,

 EM is a finite set of events, EM = EMI EMO, EMI is

set of receive events, EMO is set of send

event,

 is a finite set of symbols, ={(c,e)|cCM,

eEM},

 is the transition function,

:Q×(CM×EM)Q,

 q0 is the starting state, q0Q;

 F is a finite set of final states, FQ.

With opt, alt, loop fragments, the

modification is described as below. With other

fragments, the algorithm remains the same as in

[18, 10].

With opt fragment, we add an else

condition. A transition from the state right

before the beginning of the fragment to the state

right after the end of the fragment is added. The

condition of this transition is the negation of the

condition in opt fragment. Here are the new

transition rules.

 ()

{
 ()

 ()

{
 ()

 ()

{
 | | (

)

Figure 1 describes a simple sequence

diagram with one opt fragment and the

corresponding EDTFA of object A. The new

transition is from state q1 to q3 when the

condition is not satisfied (if !cond, the run will

transit from q1 to q3 with symbol c).

Figure 1. Opt fragment and EDTFA of A

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

Số 1.CS (09) 2019 23

With alt fragment, we add an else condition.

A transition from the state right before the

beginning of the fragment to the state right after

the end of the fragment is added. The condition

of this transition is the conjunction of the

negation of all operand’s conditions in the

fragment. Here are the new transition rules.

 ()

{

 (

)

 | | | |

 ()

{

 | | | |

 ()

{

 | | | |

Figure 2. Alt fragment and EDTFA of A

Figure 2 describes a simple sequence

diagram with one alt fragment and the

corresponding EDTFA of object A. The new

transition is from state q1 to q4 when all

operand’s conditions are not satisfied. (if !cond1

and !cond2, the run will transit from q1 to q4

with symbol d).

With loop fragment, we add an end

condition for the loop. A negation of loop

condition is added in any transitions that end the

loop.

Figure 3 describes a simple sequence diagram

with one loop fragment and the corresponding

EDTFA of object A. Transitions ended the loop

(from q1 to q4 and from q3 to q4) have an

additional condition which is the negation of

loop condition.

Here are the new transition rules.

 ()

{

 | |

Figure 3. Loop fragment and EDTFA of A

Journal of Science and Technology on Information Security

 Số 1.CS (09) 2019 24

 ()

{

 | |

 ()

{

 | |

After analyzing and extracting data from

sequence diagrams and performing translation,

we have a set of EDTFAs where each EDTFA

specifically describes behaviors of each

corresponding object.

IV. AUTOMATIC IMPLEMENTING EDTFA

IN PROMELA/SPIN

Due to the lack of verification tool which

supports EDTFA, we need to represent these

EDTFAs using an input language of any exising

tool. We have chosen the SPIN tool for some

reasons. SPIN is widely used in both academia

and industry as a software verification system.

Moreover, its input language, PROMELA, is

rather a specification language whose syntax is

similar to EDTFA (Table 1), which requires less

effort and cost in the generation. After

representing EDTFA with PROMELA, SPIN

uses the outcome and LTL properties to provide

verification results. By this approach, the

proposed method can check safety, liveness and

other properties that supporting by SPIN.

TABLE 1. MAPPING OF EDTFA ELEMENTS INTO

PROMELA

EDTFA elements PROMELA elements

Automata Process

States Label and if block

Symbol Message

Send/receive events Send/receive operations

The process of generating PROMELA files

from automata includes two steps. In the first

step, each automaton will be translated into a

PROMELA process (Algorithm 1). Then, in the

second step, these processes are combined.

Finally, the definitions of symbols and conditions

are added into a complete PROMELA file with

extension PML (Algorithm 2).

Algorithm 1: Generate PROMELA process

from an EDTFA

Input: EDTFA named ―obj‖, M = <Q, CM,

EMI, EMO, Σ, δ, q0, F>

Output: A PROMELA process describe this

automaton

1. let L0, L1, ..., LN is N list of 4-tuple <target

state, condition, event, type>, Li contains all

the transition from state Qi

2. for each transition <qi, (c, e), qj> ∈ δ do

3. if e ∈ EMI then

4. add <j, c, e, "receive"> to list Li

5. end if

6. if e ∈ EMO then

7. add <j, c, e, "send"> to list Li

8. end if

9. end for

10. let s = "proc" + name + "() {"

11. for each list Li

12. add new line "qi:" to s

13. add new line "if::" to s

14. if qi ∈F with stop condition c then

15. add new line with format "::(c) -> goto

final"

16. end if

17. for each element <j, c, e, type> Li

18. if type = send then

19. if c is not empty then

20. add new line with format "::(c) ->

msg ! e, goto qj" to s

21. else add new line with format ":: msg !

e, goto qj"

22. end if

23. else if type = receive then

24. add new line with format ":: msg ? e,

goto qj"

25. end if

26. add new line "fi"

27. end for

28. add "final: skip" to s

29. add "}" to s

30. return s

The translation of an EDTFA to PROMELA

process follows by Table 1 and below rules.

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

Số 1.CS (09) 2019 25

 Each state is transformed to a label. The

transitions between states are controlled by

goto statement.

 Each send event can be simulated to a

message sent by a channel. Each receive

event can be simulated to a message

received by a channel.

 If block is used in each label to simulate

the branch with conditions of this state.

Algorithm 1 will generate a PROMELA

process block corresponding to an EDTFA.

Firstly, with each state, the algorithm creates a

list which contains all transitions that are

received or sent by this state (line 1 – 9). Then,

the algorithm starts writing a PROMELA

process from line 10. With each state and its list

created before, the algorithm creates a new label

and an if block (line 12 – 13). If this state is a

final state, the algorithm adds an operator to go

to final label (line 14 – 15). With each transition

in the current list, if the transition is ―send‖, the

algorithm sends the symbol to the channel and

goes to destination state (line 18 – 21). If the

transition is ―receive‖, the algorithm reads the

symbol from the channel and goes to destination

state (line 23 – 24). After proceeding all

transitions, the algorithm closes the if block

(line 26) and continues with another state. In the

end, the algorithm adds a dummy label final to

represent the finish of automaton (line 28).

Finally, the algorithm closes the process (line

29) and returns a string which describes a

PROMELA process.

Algorithm 2: Generate PROMELA of a

model described by a set of EDTFAs

Input: A set of EDTFAs which is translated

from a sequence diagram, A = {M1, M2, …, Mk}

Output: File with PML extensions represent

a sequence diagram as PROMELA.

1. let s = "chan msg = [1000] of {mtype};"

2. add new line "mtype = {" to s

3. for each event e ⋃

4. add e to current line with delimiter ', '

5. end for

6. add ―}‖ to current line

7. for each condition c ∈⋃

8. define a new variable describing condition c

9. end for

10. for each automaton Mi

11. use algorithm 1 to generate PROMELA

process of Mi and add to s

12. end for

13. add new line "init {" to s

14. for each automaton Mi

15. add "run proc<Mi>();"

16. end for

17. add "}"

18. write s to file

Algorithm 2 will create a completed

PROMELA file from a set of EDTFAs. Firstly,

the algorithm defines a channel which is used

for exchanging messages between processes

(line 1). Then, the algorithm adds the definitions

of symbols (line 2 – 6) and conditions in all the

automata (line 7 – 9). Then, the algorithm adds

the processes which describe these automata by

using Algorithm 1 (line 10 – 12). Finally, the

algorithm creates the init block to automatically

run every process from start (line 13 – 17).

By using Algorithm 2 for the set of

EDTFAs, we have a PML file simulated

behaviors of sequence diagrams, included the

interaction among objects. However, in many

cases, this file cannot be directly used by SPIN

for some reasons. PROMELA specification does

not completely describe system behaviors (for

example, missing parameters of events). Syntax

errors are also inevitable in the generation

process, especially in the definition of symbols

and conditions. Furthermore, each type of

properties requires a different modification in

PROMELA file to monitor variables and events.

Therefore, after receiving this PML file, it is

necessary to perform an additional step to

review and implement required changes before

using this file in SPIN.

Currently, the correctness of this method is

not theoretical proven but by observation

through expertise using with some particular

systems. With the comparison between expected

result and the outcome of this method, we can

confirm that it provides accurate results. Section

5 will present some real systems and the

corresponding results when applying these

systems with our method.

Journal of Science and Technology on Information Security

 Số 1.CS (09) 2019 26

V. EXPERIMENTAL RESULTS

A tool has been built using JAVA to support

the proposed method. Its architecture is

presented in Figure 4.

The input of this tool is an XML file that

describes a sequence diagram. There is a

component which handles the analysis of this

sequence diagram and extracts to corresponding

objects. With each object, this tool generates a

corresponding EDTFA which describes its

behaviors. From these EDTFAs, a PROMELA

file is generated by using the proposed

algorithm. SPIN uses this file as the input.

Then, it provides verification results of

properties described by LTL.

Figure 4. Architecture of PROMELA generation

tool and verification process of sequence diagrams.

This tool is applied with not only simple

sequence diagrams (which do not have or have

only one fragment) but also with the more

complex ones (which have more than one

fragments or have nested fragments), then

compares the results with results of the method

proposed in [18]. Table 2 presents this

comparison. The method proposed in this paper

is more complete than the original one. This

method can handle consider and ignore

fragments, and specially sequence diagrams

with nested fragments. The PML file received

can be verified using SPIN.

To expertise the correctness and

effectiveness of this tool, we tested with some

sequence diagrams and individual properties.

There are three systems used in testing, ATM

[12], gas pumping [5], and ticket ordering. For

each system, we used some properties for

verification. The results are presented in Table

3. For every unsatisfied properties, SPIN can

provide a counter-example.

This tool represents a completed process for

modeling and verifying UML 2.0 sequence

diagrams using SPIN/PROMELA. Because it

does not require the formal specification of

system design, this process becomes more

practical for software development in software

companies. However, due to the limitation of

this paper, the systems used in the experiment

are still simple. Therefore, the experimental

results haven’t been able to accurately reflex the

complex of a real system design.

TABLE 2. COMPARISON BETWEEN PROPOSED

METHOD AND METHOD IN [18]

No. Fragments [18]
Proposed

Method

1 No fragment Yes Yes

2 Alternative Yes Yes

3 Loop Yes Yes

4 Option Yes Yes

5 Break Yes Yes

6 Parallel Yes Yes

7 Critical Yes Yes

8 Strict Yes Yes

9 Consider No Yes

10 Ignore No Yes

11 Sequencing No No

12 Negative No No

13 Assertion No No

14 Nested fragments No Yes

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

Số 1.CS (09) 2019 27

TABLE 3. EXPERIMENTAL RESULTS OF SOME

SEQUENCE DIAGRAMS

System Properties Result

ATM

Property 1 Pass

Property 2 Pass

Property 3 Counter Ex.

Gas Pumping

Property 1 Pass

Property 2 Pass

Property 3 Counter Ex.

Ticket Ordering

Property 1 Pass

Property 2 Counter Ex.

Property 3 Pass

VI. CONCLUSION

We have presented a completed process of

automatically modeling and verifying UML 2.0

sequence diagrams using SPIN/PROMELA. In

this process, a given sequence diagram is

extracted to its objects. Then, each object is

represented by an EDTFA. This paper proposes

a method to translate these EDTFAs into

PROMELA to use the model checker SPIN in

the verification process. This process has some

advantages in practice where large systems need

to be verified in both functional and non-

functional requirements in which security

property is one of the main concerns in modern

software development. With the support for

most of UML 2.0 fragments and especially

nested fragments, it can handle large, complex

sequence diagrams. Because the method is

simple, and mostly automatic, it can be used in

software development in IT companies.

Empirically, we presented a tool to support the

proposed method. This tool accepts an XML file

that describes a sequence diagram as the input,

analyzes and extracts objects in sequence

diagram to EDTFAs. Finally, it translates

EDTFAs into PROMELA specification. Then,

the PROMELA specification is used in SPIN to

provide verification results for given properties.

There are some limitations remaining in the

paper. The correctness of the proposed method

is not theoretically proven. The systems used in

the experiment are simple which do not

accurately reflex the complexity of a real system

design in practice. Furthermore, this process is

not completely automatic, still requires an

additional step for reviewing and modifying

PROMELA file.

In the future, we have plan to focus on

proving this method in theory. In addition, we

are working on a method to improve the quality

of sequence diagrams presentation in

PROMELA introduced in [17] in order to make

this method more automatic. Furthermore, we

will combine this method with other component-

based verification methods to deal with state-

space explosion problem. For improving the

experimental utilities, we will build a GUI to

support the proposed tool and test the method

with more complex systems.

REFERENCES

[1]. ALAWNEH, L., DEBBABI, M., HASSAINE,

F., JARRAYA, Y., & SOEANU, A., ―A unified

approach for verification and validation of

systems and software engineering models‖, In

13
th
 Annual IEEE International Symposium and

Workshop on Engineering of Computer-Based

Systems (ECBS'06), pp. 409-418, 2006.

[2]. BAIER, C., KATOEN, J. P., LARSEN, K. G.,

―Principles of model checking‖, MIT Press,

2008.

[3]. CLARKE, E. M., GRUMBERG, O., PELED,

D., ―Model checking‖. MIT press, 1999.

[4]. COBLEIGH, J. M., GIANNAKOPOULOU, D.,

PĂSĂREANU, C. S., ―Learning assumptions

for compositional verification‖, In International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Springer

Berlin Heidelberg, pp. 331-346, 2003.

[5]. GRØNMO, R., MØLLER-PEDERSEN, B.,

―From UML 2 Sequence Diagrams to State

Machines by Graph Transformation‖. Journal of

Object Technology, 10(8), 1-22, 2011.

[6]. GUELFI, N., MAMMAR, A., ―A formal

semantics of timed activity diagrams and its

PROMELA translation‖, In 12th Asia-Pacific

Software Engineering Conference, 2005.

[7]. H. M. DUONG, L. K. TRINH, P. N. HUNG,

―An Assume-Guarantee Model Checker for

Component-Based Systems‖, In IEEE-RIVF,

pp. 22-26, 2013.

[8]. JUSSILA, T., DUBROVIN, J., JUNTTILA, T.,

LATVALA, T., PORRES, I., & LINZ, J. K. U.,

―Model checking dynamic and hierarchical

UML state machines‖, Proc. MoDeV2a: Model
Development, Validation and Verification, pp.

94-110, 2006.

Journal of Science and Technology on Information Security

 Số 1.CS (09) 2019 28

[9]. KNAPP, A., WUTTKE, J., ―Model checking of

UML 2.0 interactions‖, In International

Conference on Model Driven Engineering

Languages and Systems, pp. 42-51, 2006.

[10]. L. C. LUAN, P. N. HUNG, ―A method for

model generation from UML 2.0 sequence

diagrams‖, Proc. FAIR’9, Can Tho, pp. 619-

625, 2016.

[11]. LATELLA, D., MAJZIK, I., & MASSINK,

M., ―Automatic verification of a behavioural

subset of UML statechart diagrams using the

SPIN model-checker‖, Formal aspects of

computing, 11(6), pp. 637-664, 1999.

[12]. LIMA, V., TALHI, C., MOUHEB, D.,

DEBBABI, M., WANG, L., POURZANDI, M.,

―Formal verification and validation of UML 2.0

sequence diagrams using source and destination

of messages‖, Electronic Notes in Theoretical

Com. Science, 254, pp.143-160, 2009.

[13]. MIKK, E., LAKHNECH, Y., SIEGEL, M., &

HOLZMANN, G. J. (1998). ―Implementing

statecharts in PROMELA/SPIN‖, In Industrial

Strength Formal Specification Techniques, Proc.

2
nd

 IEEE Workshop, pp. 90-101, 1998.

[14]. P. N. HUNG, T. KATAYAMA, ―Modular

Conformance Testing and Assume-Guarantee

Verification for Evolving Component-Based

Software‖, In the 15th Asia-Pacific Software

Engineering Conference, IEEE Computer

Society Press, pp. 479-486, 2008.

[15]. SCHÄFER, T., KNAPP, A., MERZ, S.,

―Model checking UML state machines and

collaborations‖, Electronic Notes in Theoretical

Com. Sci., 55(3), pp.357-369, 2001.

[16]. SIVERONI, I., ZISMAN, A.,

SPANOUDAKIS, G., ―Property specification

and static verification of UML models‖, In

Availability, Reliability and Security, pp. 96-

103, 2008.

[17]. VAN AMSTEL, M. F., LANGE, C. F., &

CHAUDRON, M. R., ―Four automated

approaches to analyze the quality of UML

sequence diagrams‖. In Computer Software and

Applications Conf., pp. 415-424, 2007.

[18]. ZHANG, C. & DUAN, Z., ―Specification

and Verification of UML 2.0 Sequence

Diagrams Using Event Deterministic Finite

Automata‖, in 'SSIRI (Companion)', IEEE

Computer Society, pp. 41-46, 2011.

[19]. OMG Unified Modeling Language. [Online].

http://www.omg.org/spec/UML/2.5/PDF.

[20]. HOLZMANN, GERARD J (1997). "The

model checker SPIN." IEEE Transactions on

software engineering 23.5: 279.

[21]. Basic SPIN Manual. [Online]. Available:

http://spinroot.com/spin/Man/Manual.html

ABOUT THE AUTHOR

PhD. Chi Luan Le

Workplace: University of

Transport Technology.

Email: luanlc@utt.edu.vn

The education process: received

his B.S. degree from Hanoi

National University of

Education (2002), M.S. and

PhD. degree from University of

Engineering and Technology, Vietnam National

University, Hanoi (2009, 2018).

Research today: assume-guarantee verification,

model-based testing, and software evolution.

http://spinroot.com/spin/Man/Manual.html

