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Abstract— To ensure the protection of 

information processed by computer systems is 

currently the most important task in the 

construction and operation of the automated 

systems. The paper presents the application 

justification of a new set of features distinguished at 

the stage of the static analysis of the executable files 

to address the problem of malicious code detection. 

In the course of study, following problems were 

solved: development of the executable files classifier 

in the absence of a priori data concerning their 

functionality; designing class models of uninfected 

files and malware during the machine learning 

process; development of malicious code detection 

procedure using the neural networks mathematical 

apparatus and decision tree composition relating to 

the set of features specified on the basis of the 

executable files static analysis. The paper also 

describes the functional model of malware detection 

system using the executable files static analysis. The 

conclusion contains the results of experimental 

evaluation of the developed detection mechanism 

efficiency on the basis of neural networks and 

decision tree composition. The obtained data 

confirmed the hypothesis about the possibility of 

constructing the heuristic malware analyzer on the 

basis of features distinguished during the static 

analysis of the executable files. However, the 

approach based on the decision tree composition 

enables to obtain a significantly lower false negative 

rate probability with the specified initial data and 

classifier parameter values relating to neural 

networks. 

Tóm tắt— Trong hệ thống mạng, vấn đề an toàn 

và bảo mật thông tin đóng một vai trò hết sức quan 

trọng. Bài báo này trình bày cơ sở lý thuyết về khả 

năng sử dụng không gian đặc trưng mới, được trích 

chọn trong quá trình phân tích tĩnh các tập tin thực 

thi để giải quyết bài toán nhận diện mã độc. Đóng 

góp khoa học trong bài báo bao gồm: Xây dựng bộ 

phân lớp tập tin thực thi trong trường hợp thiếu các 

thông tin tiên nghiệm, mô hình hóa lớp các tập tin 

bị lây nhiễm và phần mềm độc hại trong quá trình 

học máy; Xây dựng phương thức phát hiện phần 

mềm độc hại sử dụng mạng nơron và cây quyết 
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định. Bài báo cũng mô tả mô hình hệ thống phát 

hiện phần mềm độc hại bằng cách sử dụng phương 

pháp phân tích tĩnh các tập tin thực thi. Phần kết 

luận trình bày các kết quả thực nghiệm để đánh giá 

hiệu suất mô hình phát hiện đã được đề xuất. Các 

kết quả thu được đã khẳng định giả thuyết về khả 

năng xây dựng công cụ phân tích phần mềm độc hại 

sử dụng phương pháp heuristic dựa trên các đặc 

trưng được trích chọn trong quá trình phân tích 

tĩnh các tập tin thực thi. 
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I. INTRODUCTION 

Security of information processed by 

computer systems poses the most important task 

for building and operating of automated systems 

today. Along with that, one of the most dangerous 

threat is computer malware that can modify 

(delete) user data, steal confidential information, 

slowdown or disable operating system. This 

research substantiates the possibility of using 

feature space based on the static analysis of 

executable files for solving the task of heuristic 

malware detection using the neural networks and 

decision trees composition mathematical apparatus. 

Today there exist different malware detection 

techniques. The most widely known techniques 

are the following ones [1]: 

- signature-based search (malicious code 

detection based on byte sequence which 

definitely characterizes it); 

- heuristic search (code detection based on 

indirect attributes which characterize it as 

being malicious); 

- behavioral mechanisms that affect 

executing forbidden operations by different 

processes (e.g., access to critical memory 

areas or executable code injection into 

other processes). 

All above-listed techniques have essential 

weak points, i.e. they possess limited capabilities 

Constructing Heuristic Malware Detection 

Mechanism Based on Static Analysis



Journal of Science and Technology on Information security 

 

4 Số 1.CS (05) 2017    

 

for detection of modified and new viruses, or 

require the user to be involved in the decision-

making process with respect to file belonging to a 

certain class. 

Today the antivirus software cannot guarantee 

100% malware protection. The results of tests 

performed by AV-Comparatives in March 2017 

show that heuristic detection rate of new malware 

strains amounts to approximately 90-95%, 

whereas false positive rate is about 1-3% for most 

of the modern antivirus software [2]. 

To detect new malware, heuristic methods or 

more generally statistical approaches are the most 

promising research trends nowadays. Some of 

them based on structural analysis and executable 

file features [3-5]. One of the solutions for 

increasing the effectiveness of heuristic malware 

detection process is the development of new tools 

and techniques for malware detection. The 

purpose of this study is to prove the possibility to 

build a heuristic technique for malware detection 

based on static analysis of executable files. The 

distinctive feature of the suggested approach 

consists in the use of new feature space for 

building a heuristic detector based on the well-

known machine learning techniques, i.e. neural 

networks and decision trees composition. In this 

context, a decision on the malware presence will 

be taken according to a certain law based on 

availability or absence of totality of features from 

criteria array defined at the stage of executable file 

static analysis. 

II. FORMING FEATURE SPACE BASED ON 

STATIC EXECUTABLE FILES ANALYSIS 

In order to substantiate the possibility of using 

suggested feature space for solving the task of 

heuristic malware detection, the neural networks 

and decision trees composition technique has been 

applied in this study. Let us consider the totality 

of the features being studied. 

The whole feature space may be divided into 

eight conditional feature groups. Group 1 

comprises the features based on the results of 

characteristics evaluation for the following 

executable files parts: file header size, optional 

header, MS-DOS header, digital certificate. Since 

the structure of the headers has been defined, in 

case of their size change relevant attribute will be 

detected. Group 2 comprises the features 

associated with the use of packing, archiving and 

encrypting utilities for executable files such as 

UPX, MPRESS, PeCompact etc. Group 3 

comprises information about dynamic libraries, as 

well as functions exported and imported by the 

executable file. The rate of certain API-functions 

and dynamic libraries usage by malware has been 

precomputed. As a result, two classes have been 

identified. The first class comprises API-functions 

by means of which malicious actions can be 

performed. The second class comprises the rest of 

the functions. In this context, belonging to a 

certain class of API-functions is to be regarded as 

a feature. Group 4 comprises data on digital 

certificates, namely, whether they are available in 

the file, whether data are out-of-date or have been 

recalled. Group 5 comprises the features based on 

the information about PE-file structure, namely, 

availability of anonymous section, whether 

―overlay‖ technique is applied, whether the first 

section is available for writing, whether the 

control function is transferred by the file to other 

files, entry point address is out of the file section 

boundaries, in the first or other sections, whether 

the last and other sections are of executable type. 

Feature group 6 is formed based on the manifest, 

its availability, correspondence of the manifest 

structure to standard format, whether the 

administration privilege is requested by the 

manifest etc. Group 7 comprises information 

about executable file interface with the operating 

system, namely, whether the use of Structured 

Exception Handling (SEH), Data Execution 

Prevention (DEP) and Address Space Layout 

Randomization (ASLR) is ignored, whether the 

application is executed in Visual Basic virtual 

machine, whether Thread Local Storage (TLS) is 

used. Group 8 comprises information not included 

in previous seven groups; for example, whether 

the file contains rigidly fixed IP-addresses, 

whether direct cookie links are present, whether 

databases are in use etc. 

Each analyzed executable file is described in 

the form of a Boolean vector, where one means 

the feature is available, zero means no feature is 

available.  

 III. STATIC HEURISTIC MALWARE 

DETECTION MECHANISMS 

A. Neural malware detection mechanism based on 

static executable files analysis 

To increase the effectiveness of heuristic 

analysis of executable files we suggest using the 

malware detection technique based on neural 

networks [6-9]. Utilization of the neural network 

mathematical apparatus together with the created 
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feature space will enable us to solve the following 

tasks:  

1) generating class models in the course of 

learning (uninfected files and malware); 

2) developing malware detection procedure 

through the use of feature vector based on static 

analysis of executable files; 

3) classifying executable files without priori 

data on their infection with malicious code. 

Solution of the task for developing the neural 

network malware detection technique based on 

static analysis of executable files comprises two 

main stages as follows:  

1) learning the neural network which defines 

malware and uninfected file classes (learning 

subsystem); 

2) calculating output values of neural network 

based on the sequence of features singled out of 

the files analyzed, and decision-making on files 

belonging to a certain class (classification 

subsystem). 

Figure 1 shows the functional model of 

malware detection system based on neural 

networks.  
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Figure 1. Functional model of malware detection 

system based on neural networks. 

Let us consider the learning process in detail. 

It consists of two main stages:  

1) supervised learning the single-layer neural 

networks (single-layer neural networks were 

chosen just for test purposes to decrease 

computational complexity); 

2) choosing the threshold value for decision-

making on the file infection status. 

At the first stage, the neural network is learnt 

in supervised mode. The network is provided with 

values of both input and priori known output 

signals, whereas weight coefficients are subject to 

corrective adjustment in order to increase the 

accuracy of the neural network learning. 

The result of the first learning stage is a 

weighting coefficients matrix of the learnt neural 

network for each file class. 

At the second learning stage for the given 

learning set it is necessary to evaluate mistake 

probability values of the first and second grade 

depending on the threshold value, and choose 

threshold value in accordance with the 

requirements to the first and second grade mistake 

criticality for further effective functioning of the 

neural network as a malware detection tool. 

As a result of the second learning stage a 

threshold value to be used for executable file 

classification needs to be chosen. The learning 

procedure result is a weighting coefficients matrix 

and threshold value. 

The detection procedure consists of two main 

stages [10, 11]: 

1) calculation of initial values for neural 

networks; 

2) decision-making on the file belonging to a 

certain class. 

During the first stage the detection system 

input receives the feature sequence singled out of 

the file analyzed. Then the neural network output 

values are calculated using weighting coefficients 

matrices entered into the database. 

During the second stage the obtained value is 

compared with the threshold one and decision on 

the analyzed file belonging to a certain software 

class is taken. 

B. Heuristic malware detection mechanism based 

on decision trees composition 

As an alternative approach, in order to 

substantiate the possibility to build heuristic 

malware detection tool based on static analysis of 

executable files this study provides the results of 

classifier effectiveness evaluation based on the 

decision trees composition. 

As a rule, composition of algorithms is 

regarded as a combination of N algorithms 

)(),...,(1 xdxd N  in a single one. The idea consists in 

learning the algorithms and averaging of the 

obtained responses: 
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This formula directly answers the regression 

problem. For the case of binary classification 

)(),...,(1 xdxd N it is necessary to take a sign from 

the resulting formula: 





N

n

n xd
N

xa
1

)(
1

sign)( .               (2) 

To build a decision trees composition [12] 

first it is necessary to learn the basic N algorithms 

on different subsets singled out from the learning 

set. To single out random sets, an approach based 

on the random sets generation from the learning 

set through removal followed by return procedure 

(bootstrap) has been applied in this study. At the 

same time, the size of each subset amounts to 

L632,0 , where L is the learning set size. 

Additionally, random subspace technique [13] 

has been applied. The technique consists in 

choosing the random subset of features for 

learning each basic algorithm. The number of the 

features chosen is a hyperparameter of the given 

technique. 

At the learning stage for both approaches 

described above it is necessary to create two 

representative learning sets: uninfected files and 

malware. Test set is to be created using the files 

that are not included in the learning file set. 

During the pre-processing stage, a totality of 

features is singled out in the form of a Boolean 

vector from the executable files sent to the 

system input.  

For learning block it is required to single out a 

totality of feature sequences from the whole 

totality of files of the representative learning set. 

For detection block it is required to single out a 

feature sequence from one file which was received 

at the classification system input. 

Initial data used in the study: 

- 1862 uninfected files (system and program 

files collected from different Windows 

operating systems); 

- 1910 malware files (authors private 

collection); 

- 353 features singled out based on static 

analysis of executable files. 

As a result of performed static analysis of 

provided file sets, a feature vector has been 

generated for each executable file of both classes.  

The rated evaluations of features distribution 

for uninfected file class and malware class are 

shown in Figures 2 and 3 respectively. 

 

a.  

Figure 2. Feature distribution estimation for uninfected 

files.  

b.  

Figure 3. Feature distribution estimation for malware. 

The provided diagrams cannot give the basis 

for making firm conclusion on statistic difference 

of both classes within the framework of created 

feature space. However, the groups of performed 

experiments have confirmed the hypothesis that 

building a malicious code heuristic analyzer based 

on the static analysis of executable files is possible. 

To evaluate the effectiveness of the neural 

network technique the following initial data have 

been used: 

- learning rate factor 0.1; 

- accuracy 0.001; 

- number of iterations for reaching the 

required learning accuracy has been 

limited by 1000. 

Figure 4 shows the results of experimental 

evaluation of the malware detection technique 

software implementation based on neural 

networks: mistake probability of the first (FPR) 

and second (FNR) grade depending on the 

threshold value parameter. 
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c.  

Figure 4. Error rate distribution depending on  

threshold value. 

The performed groups of experiments have 

enabled to substantiate the threshold value of the 

hyper parameter of the malware detection neural 

network technique equal to 180. As a result of the 

developed malware detection technique 

application the following mistake probability 

values have been obtained: 

- first grade mistake probability (false 

positive rate) is 0.002; 

- second grade mistake probability (false 

negative rate) is 0.018. 

Then the classifier has been learnt based on 

the decision trees composition, and the obtained 

result has been cross validated. Figure 5 shows the 

relation between detection accuracy and number 

of decision trees. Along with that, the sets of both 

classes have been divided with the proportion of 

0.7 (learning), 0.3 (test). 

 

d.  

Figure 5. Accuracy value depending on number of 

trees. 

The performed experimental evaluation of the 

developed solution allows to substantiate the 

following hyperparameters of the classifier: 

- number of decision trees is 40; 

- number of valuable features is 50 (see 

Figure 6). 

e.  

Figure 6. Accurarcy value depending on number of 

features. 

The following mistake probability evaluation 
values have been obtained when choosing the 
given parameters of the classifier: 

- first grade mistake probability (false 
positive rate) is 0.0035; 

- second grade mistake probability (false 
negative rate) is 0.0015. 

IV. CONCLUSION 

It should be noted that both approaches have 

confirmed the hypothesis that building a malicious 

code heuristic analyzer based on features singled 

out during static analysis of executable files is 

possible. However, the approach based on the 

decision trees composition allows obtaining 

much less probability value of false negative 

rate relative to neural network tool with the 

above-mentioned initial data and classifier 

parameter values. 

The obtained values of mistake probabilities for 

developed prototypes comply with the requirements 

of the Federal Service for Technical and Export 

Control [14] imposed to antivirus software. 

In conclusion it should be noted that the 

suggested approach consisting in the application 

of the space of features singled out from the 

executable files at the stage of static analysis 

and well known machine learning techniques 

enables us to implement a new mechanism for 

heuristic detection of malicious code which 

provides the possibility to reveal new and 

modified malware samples. 
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