
Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 1.CS (05) 2017 3

Alexander Kozachok

Abstract— To ensure the protection of

information processed by computer systems is

currently the most important task in the

construction and operation of the automated

systems. The paper presents the application

justification of a new set of features distinguished at

the stage of the static analysis of the executable files

to address the problem of malicious code detection.

In the course of study, following problems were

solved: development of the executable files classifier

in the absence of a priori data concerning their

functionality; designing class models of uninfected

files and malware during the machine learning

process; development of malicious code detection

procedure using the neural networks mathematical

apparatus and decision tree composition relating to

the set of features specified on the basis of the

executable files static analysis. The paper also

describes the functional model of malware detection

system using the executable files static analysis. The

conclusion contains the results of experimental

evaluation of the developed detection mechanism

efficiency on the basis of neural networks and

decision tree composition. The obtained data

confirmed the hypothesis about the possibility of

constructing the heuristic malware analyzer on the

basis of features distinguished during the static

analysis of the executable files. However, the

approach based on the decision tree composition

enables to obtain a significantly lower false negative

rate probability with the specified initial data and

classifier parameter values relating to neural

networks.

Tóm tắt— Trong hệ thống mạng, vấn đề an toàn

và bảo mật thông tin đóng một vai trò hết sức quan

trọng. Bài báo này trình bày cơ sở lý thuyết về khả

năng sử dụng không gian đặc trưng mới, được trích

chọn trong quá trình phân tích tĩnh các tập tin thực

thi để giải quyết bài toán nhận diện mã độc. Đóng

góp khoa học trong bài báo bao gồm: Xây dựng bộ

phân lớp tập tin thực thi trong trường hợp thiếu các

thông tin tiên nghiệm, mô hình hóa lớp các tập tin

bị lây nhiễm và phần mềm độc hại trong quá trình

học máy; Xây dựng phương thức phát hiện phần

mềm độc hại sử dụng mạng nơron và cây quyết

This manuscript is received on 15/02/2017. It is

commented on 20/2/2017 and is accepted on 20/3/2017 by

the first reviewer. It is commented on 25/2/2017 and is

accepted on 30/3/2017 by the second reviewer.

định. Bài báo cũng mô tả mô hình hệ thống phát

hiện phần mềm độc hại bằng cách sử dụng phương

pháp phân tích tĩnh các tập tin thực thi. Phần kết

luận trình bày các kết quả thực nghiệm để đánh giá

hiệu suất mô hình phát hiện đã được đề xuất. Các

kết quả thu được đã khẳng định giả thuyết về khả

năng xây dựng công cụ phân tích phần mềm độc hại

sử dụng phương pháp heuristic dựa trên các đặc

trưng được trích chọn trong quá trình phân tích

tĩnh các tập tin thực thi.

Keywords: anti-virus protection; malware;

neural networks; decision trees; heuristic analysis;

machine learning; detection.

Từ khóa: ngăn ngừa virus; phần mềm độc hại;

mạng nơron; cây quyết định; phân tích heuristic;

học máy; phát hiện.

I. INTRODUCTION

Security of information processed by

computer systems poses the most important task

for building and operating of automated systems

today. Along with that, one of the most dangerous

threat is computer malware that can modify

(delete) user data, steal confidential information,

slowdown or disable operating system. This

research substantiates the possibility of using

feature space based on the static analysis of

executable files for solving the task of heuristic

malware detection using the neural networks and

decision trees composition mathematical apparatus.

Today there exist different malware detection

techniques. The most widely known techniques

are the following ones [1]:

- signature-based search (malicious code

detection based on byte sequence which

definitely characterizes it);

- heuristic search (code detection based on

indirect attributes which characterize it as

being malicious);

- behavioral mechanisms that affect

executing forbidden operations by different

processes (e.g., access to critical memory

areas or executable code injection into

other processes).

All above-listed techniques have essential

weak points, i.e. they possess limited capabilities

Constructing Heuristic Malware Detection

Mechanism Based on Static Analysis

Journal of Science and Technology on Information security

4 Số 1.CS (05) 2017

for detection of modified and new viruses, or

require the user to be involved in the decision-

making process with respect to file belonging to a

certain class.

Today the antivirus software cannot guarantee

100% malware protection. The results of tests

performed by AV-Comparatives in March 2017

show that heuristic detection rate of new malware

strains amounts to approximately 90-95%,

whereas false positive rate is about 1-3% for most

of the modern antivirus software [2].

To detect new malware, heuristic methods or

more generally statistical approaches are the most

promising research trends nowadays. Some of

them based on structural analysis and executable

file features [3-5]. One of the solutions for

increasing the effectiveness of heuristic malware

detection process is the development of new tools

and techniques for malware detection. The

purpose of this study is to prove the possibility to

build a heuristic technique for malware detection

based on static analysis of executable files. The

distinctive feature of the suggested approach

consists in the use of new feature space for

building a heuristic detector based on the well-

known machine learning techniques, i.e. neural

networks and decision trees composition. In this

context, a decision on the malware presence will

be taken according to a certain law based on

availability or absence of totality of features from

criteria array defined at the stage of executable file

static analysis.

II. FORMING FEATURE SPACE BASED ON

STATIC EXECUTABLE FILES ANALYSIS

In order to substantiate the possibility of using

suggested feature space for solving the task of

heuristic malware detection, the neural networks

and decision trees composition technique has been

applied in this study. Let us consider the totality

of the features being studied.

The whole feature space may be divided into

eight conditional feature groups. Group 1

comprises the features based on the results of

characteristics evaluation for the following

executable files parts: file header size, optional

header, MS-DOS header, digital certificate. Since

the structure of the headers has been defined, in

case of their size change relevant attribute will be

detected. Group 2 comprises the features

associated with the use of packing, archiving and

encrypting utilities for executable files such as

UPX, MPRESS, PeCompact etc. Group 3

comprises information about dynamic libraries, as

well as functions exported and imported by the

executable file. The rate of certain API-functions

and dynamic libraries usage by malware has been

precomputed. As a result, two classes have been

identified. The first class comprises API-functions

by means of which malicious actions can be

performed. The second class comprises the rest of

the functions. In this context, belonging to a

certain class of API-functions is to be regarded as

a feature. Group 4 comprises data on digital

certificates, namely, whether they are available in

the file, whether data are out-of-date or have been

recalled. Group 5 comprises the features based on

the information about PE-file structure, namely,

availability of anonymous section, whether

―overlay‖ technique is applied, whether the first

section is available for writing, whether the

control function is transferred by the file to other

files, entry point address is out of the file section

boundaries, in the first or other sections, whether

the last and other sections are of executable type.

Feature group 6 is formed based on the manifest,

its availability, correspondence of the manifest

structure to standard format, whether the

administration privilege is requested by the

manifest etc. Group 7 comprises information

about executable file interface with the operating

system, namely, whether the use of Structured

Exception Handling (SEH), Data Execution

Prevention (DEP) and Address Space Layout

Randomization (ASLR) is ignored, whether the

application is executed in Visual Basic virtual

machine, whether Thread Local Storage (TLS) is

used. Group 8 comprises information not included

in previous seven groups; for example, whether

the file contains rigidly fixed IP-addresses,

whether direct cookie links are present, whether

databases are in use etc.

Each analyzed executable file is described in

the form of a Boolean vector, where one means

the feature is available, zero means no feature is

available.

 III. STATIC HEURISTIC MALWARE

DETECTION MECHANISMS

A. Neural malware detection mechanism based on

static executable files analysis

To increase the effectiveness of heuristic

analysis of executable files we suggest using the

malware detection technique based on neural

networks [6-9]. Utilization of the neural network

mathematical apparatus together with the created

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 1.CS (05) 2017 5

feature space will enable us to solve the following

tasks:

1) generating class models in the course of

learning (uninfected files and malware);

2) developing malware detection procedure

through the use of feature vector based on static

analysis of executable files;

3) classifying executable files without priori

data on their infection with malicious code.

Solution of the task for developing the neural

network malware detection technique based on

static analysis of executable files comprises two

main stages as follows:

1) learning the neural network which defines

malware and uninfected file classes (learning

subsystem);

2) calculating output values of neural network

based on the sequence of features singled out of

the files analyzed, and decision-making on files

belonging to a certain class (classification

subsystem).

Figure 1 shows the functional model of

malware detection system based on neural

networks.

Learning neural

network

Precomputation

Test set

Learning set

Choose threshold

value

Neural network

models database

Compute neural

network output
Solver

Weighting

coefficients matrix

Neural network

output

Learning

Classification

Feature values

sequence

Feature values

sequences set

Threshold value

Threshold

value

Weighting

coefficients matrices

Class number (malware

or uninfected)

Figure 1. Functional model of malware detection

system based on neural networks.

Let us consider the learning process in detail.

It consists of two main stages:

1) supervised learning the single-layer neural

networks (single-layer neural networks were

chosen just for test purposes to decrease

computational complexity);

2) choosing the threshold value for decision-

making on the file infection status.

At the first stage, the neural network is learnt

in supervised mode. The network is provided with

values of both input and priori known output

signals, whereas weight coefficients are subject to

corrective adjustment in order to increase the

accuracy of the neural network learning.

The result of the first learning stage is a

weighting coefficients matrix of the learnt neural

network for each file class.

At the second learning stage for the given

learning set it is necessary to evaluate mistake

probability values of the first and second grade

depending on the threshold value, and choose

threshold value in accordance with the

requirements to the first and second grade mistake

criticality for further effective functioning of the

neural network as a malware detection tool.

As a result of the second learning stage a

threshold value to be used for executable file

classification needs to be chosen. The learning

procedure result is a weighting coefficients matrix

and threshold value.

The detection procedure consists of two main

stages [10, 11]:

1) calculation of initial values for neural

networks;

2) decision-making on the file belonging to a

certain class.

During the first stage the detection system

input receives the feature sequence singled out of

the file analyzed. Then the neural network output

values are calculated using weighting coefficients

matrices entered into the database.

During the second stage the obtained value is

compared with the threshold one and decision on

the analyzed file belonging to a certain software

class is taken.

B. Heuristic malware detection mechanism based

on decision trees composition

As an alternative approach, in order to

substantiate the possibility to build heuristic

malware detection tool based on static analysis of

executable files this study provides the results of

classifier effectiveness evaluation based on the

decision trees composition.

As a rule, composition of algorithms is

regarded as a combination of N algorithms

)(),...,(1 xdxd N in a single one. The idea consists in

learning the algorithms and averaging of the

obtained responses:

Journal of Science and Technology on Information security

6 Số 1.CS (05) 2017





N

n
n xd

N
xa

1

)(
1

)(. (1)

This formula directly answers the regression

problem. For the case of binary classification

)(),...,(1 xdxd N it is necessary to take a sign from

the resulting formula:





N

n

n xd
N

xa
1

)(
1

sign)(. (2)

To build a decision trees composition [12]

first it is necessary to learn the basic N algorithms

on different subsets singled out from the learning

set. To single out random sets, an approach based

on the random sets generation from the learning

set through removal followed by return procedure

(bootstrap) has been applied in this study. At the

same time, the size of each subset amounts to

L632,0 , where L is the learning set size.

Additionally, random subspace technique [13]

has been applied. The technique consists in

choosing the random subset of features for

learning each basic algorithm. The number of the

features chosen is a hyperparameter of the given

technique.

At the learning stage for both approaches

described above it is necessary to create two

representative learning sets: uninfected files and

malware. Test set is to be created using the files

that are not included in the learning file set.

During the pre-processing stage, a totality of

features is singled out in the form of a Boolean

vector from the executable files sent to the

system input.

For learning block it is required to single out a

totality of feature sequences from the whole

totality of files of the representative learning set.

For detection block it is required to single out a

feature sequence from one file which was received

at the classification system input.

Initial data used in the study:

- 1862 uninfected files (system and program

files collected from different Windows

operating systems);

- 1910 malware files (authors private

collection);

- 353 features singled out based on static

analysis of executable files.

As a result of performed static analysis of

provided file sets, a feature vector has been

generated for each executable file of both classes.

The rated evaluations of features distribution

for uninfected file class and malware class are

shown in Figures 2 and 3 respectively.

a.

Figure 2. Feature distribution estimation for uninfected

files.

b.

Figure 3. Feature distribution estimation for malware.

The provided diagrams cannot give the basis

for making firm conclusion on statistic difference

of both classes within the framework of created

feature space. However, the groups of performed

experiments have confirmed the hypothesis that

building a malicious code heuristic analyzer based

on the static analysis of executable files is possible.

To evaluate the effectiveness of the neural

network technique the following initial data have

been used:

- learning rate factor 0.1;

- accuracy 0.001;

- number of iterations for reaching the

required learning accuracy has been

limited by 1000.

Figure 4 shows the results of experimental

evaluation of the malware detection technique

software implementation based on neural

networks: mistake probability of the first (FPR)

and second (FNR) grade depending on the

threshold value parameter.

Nghiên cứu Khoa học và Công nghệ trong lĩnh vực An toàn thông tin

 Số 1.CS (05) 2017 7

c.

Figure 4. Error rate distribution depending on

threshold value.

The performed groups of experiments have

enabled to substantiate the threshold value of the

hyper parameter of the malware detection neural

network technique equal to 180. As a result of the

developed malware detection technique

application the following mistake probability

values have been obtained:

- first grade mistake probability (false

positive rate) is 0.002;

- second grade mistake probability (false

negative rate) is 0.018.

Then the classifier has been learnt based on

the decision trees composition, and the obtained

result has been cross validated. Figure 5 shows the

relation between detection accuracy and number

of decision trees. Along with that, the sets of both

classes have been divided with the proportion of

0.7 (learning), 0.3 (test).

d.

Figure 5. Accuracy value depending on number of

trees.

The performed experimental evaluation of the

developed solution allows to substantiate the

following hyperparameters of the classifier:

- number of decision trees is 40;

- number of valuable features is 50 (see

Figure 6).

e.

Figure 6. Accurarcy value depending on number of

features.

The following mistake probability evaluation
values have been obtained when choosing the
given parameters of the classifier:

- first grade mistake probability (false
positive rate) is 0.0035;

- second grade mistake probability (false
negative rate) is 0.0015.

IV. CONCLUSION

It should be noted that both approaches have

confirmed the hypothesis that building a malicious

code heuristic analyzer based on features singled

out during static analysis of executable files is

possible. However, the approach based on the

decision trees composition allows obtaining

much less probability value of false negative

rate relative to neural network tool with the

above-mentioned initial data and classifier

parameter values.

The obtained values of mistake probabilities for

developed prototypes comply with the requirements

of the Federal Service for Technical and Export

Control [14] imposed to antivirus software.

In conclusion it should be noted that the

suggested approach consisting in the application

of the space of features singled out from the

executable files at the stage of static analysis

and well known machine learning techniques

enables us to implement a new mechanism for

heuristic detection of malicious code which

provides the possibility to reveal new and

modified malware samples.

Journal of Science and Technology on Information security

8 Số 1.CS (05) 2017

REFERENCES

[1] Kozachok, A. V. ―Mathematical model of

recognition destructive software tools based on

hidden Markov models‖, A.V. Kozachok, ―Vestnik

SibGUTI‖, Vol. 3, pp. 29-39. – (in Russian), 2012.

[2] AV-Comparatives (2017) Malware protection test.

URL https://www.av-comparatives.org/wpcontent/

uploads/2017/04/avc mpt 201703_en.pdf.

[3] Shabtai A, Moskovitch R, Elovici Y, Glezer C

―Detection of malicious code by applying machine

learning classifiers on static features: A state-of-

the-art survey‖. Information Security Technical

Report 14(1) pp.16–29, 2009.

https://doi.org/10.1016/j.istr.2009.03.003

http://www.sciencedirect.com/science/article/pii/S

136341270900004.

[4] Santos I, Devesa J, Brezo F, Nieves J, Bringas PG

―Opem: A static-dynamic approach for machine-

learning based malware detection‖. In:

International Joint Conference CISIS12-ICEUTE

12-SOCO 12 Special Sessions, Springer, Springer-

Verlag Berlin Heidelberg, Ostrava, Czech

Republic, pp 271–280, 2013.

[5] David B, Filiol E, Gallienne K , ―Structural

analysisof binary executable headers for malware

detection optimization‖. Journal of Computer

Virology and Hacking Techniques Vol. 13(2),pp.

87–93, 2017.http://dx.doi.org/10.1007/s11416-

016-0274-2.

[6] Uossermen, F. ―Neurocomputing machinery‖, F.

Uosserman – Moscow: ―Mir‖ Publisher (in

Russian), p.184, 1992.

[7] Smagin, A. A. ―Intelligent information systems /

A.A. Smagin, S.V. Lipatova, A.S. Mel'nichenko‖,

Ul'janovsk: ―UlGU‖ Publisher, (in Russian), p.136,

2010.

[8] Bayer, U. Scalable, ―Behavior-Based Malware

Clustering / U. Bayer, P. M. Comparetti, C.

Hlauschek, C. Kruegel, E. Kirda‖, NDSS, Vol. 9,

pp. 8–11, 2009.

[9] Hinton, G. E. ―A fast learning algorithm for deep

belief nets‖, G. E. Hinton, S. Osindero, Y. W. Teh

Neural computation. Vol. 18(7), pp. 1527–1554,

2006.

[10] Moser, A. ―Limits of static analysis for malware

detection‖, A. Moser, C. Kruegel, E. Kirda

Twenty-Third Annual Computer Security

Applications Conference. pp. 421-430, 2007.

[11] Srivastava, N. ―Dropout: a simple way to prevent

neural networks from overfitting‖, N. Srivastava,

G. E. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov. – Journal of Machine Learning

Research, Vol. 15(1), pp. 1929-1958, 2014.

[12] Schmind, H. ―Probabilistic part-ofispeech tagging

using decision trees‖, H. Schmind, In New

methods in language processing. Routledge

Publisher, p.154, 2013.

[13] Shi, T. ―Unsupervised learning with random forest

predictors‖, T. Shi, S. Horvath, Journal of

Computational and Graphical Statistics Vol. 15(1),

pp. 118–138, 2006.

[14] Federal Service for Technology and Export

Control, ―Informacionnoe soobshhenie ob

utverzhdenii trebovanij k sredstvam antivirusnoj

zashhity‖ (in Russian) 240/24/3095, 2012.

AUTHORS PROFILE

PhD. Alexander Kozachok

Workplace: The Academy of

Federal Guard Service of the

Russian Federation.

Email: alex.totrin@gmail.com

The education process: has

received Ph.D. degree in

Engineering Sciences in

Academy of Federal Guard

Service of the Russian Federation

in Dec. 2012.

Research today: Information security; Unauthorized

access protection; Mathematical cryptography;

theoretical problems of computer science.

mailto:alex.totrin@gmail.com

