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Abstract—We propose a new double-block-

length compression function which is called 

Alpha-DBL. This scheme uses two parallel secure 

single block length schemes based on a block 

cipher with 𝟐𝒏-bit key and 𝒏-bit block size to 

compress a 𝟑𝒏-bit string to a 𝟐𝒏-bit one. We show 

that the Alpha-DBL scheme attains nearly 

optimal collision security and preimage security 

bounds (up to 𝟐𝒏 and 𝟐𝟐𝒏 queries for finding a 

collision and a preimage, respectively). More 

precisely, for 𝒏 = 𝟏𝟐𝟖, no adversary making less 

than 𝟐𝒏−𝟏.𝟐𝟕 = 𝟐𝟏𝟐𝟔.𝟕𝟑 queries can find a collision 

with probability greater than 1/2. To our 

knowledge, this collision security bound is nearly 

better than other such compression functions. In 

addition, we provide a preimage security analysis 

of Alpha-DBL that shows security bound of 

𝟐𝟐𝒏−𝟓 = 𝟐𝟐𝟓𝟏 queries for 𝒏 = 𝟏𝟐𝟖. Using this 

scheme in the iterated hash function construction 

can preserve the collision resistance security and 

the preimage resistance security.  

Tóm tắt—Chúng tôi đề xuất một hàm nén độ 

dài khối kép mới được gọi là Alpha-DBL. Lược đồ 

này sử dụng hai lược đồ độ dài khối đơn an toàn 

song song dựa trên mã khối với khóa 𝟐𝒏-bit và 

kích thước khối 𝒏-bit để nén chuỗi 𝟑𝒏-bit thành 

chuỗi 𝟐𝒏-bit. Chúng tôi đã chứng minh rằng, lược 

đồ Alpha-DBL đạt được cận an toàn kháng va 

chạm và kháng tiền ảnh gần như tối ưu (tối đa 𝟐𝒏 

và 𝟐𝟐𝒏 truy vấn tương ứng để tìm va chạm và tiền 

ảnh). Cụ thể với 𝒏 = 𝟏𝟐𝟖, một kẻ tấn công bất kỳ 

thực hiện ít hơn 𝟐𝒏−𝟏.𝟐𝟕 = 𝟐𝟏𝟐𝟔.𝟕𝟑 truy vấn chỉ có 

thể tìm thấy một va chạm với xác suất nhỏ hơn 1/2. 

Theo hiểu biết của chúng tôi, cận an toàn kháng va 

chạm này tốt hơn so với các hàm nén khác. Ngoài 

ra, chúng tôi đã đưa ra phân tích độ an toàn kháng 

tiền ảnh của Alpha-DBL cho thấy cận an toàn là 

2𝟐𝟐𝒏−𝟓 = 𝟐𝟐𝟓𝟏 truy vấn cho 𝒏 = 𝟏𝟐𝟖. Sử dụng 

lược đồ này trong việc xây dựng hàm băm được 

lặp có thể bảo toàn độ an toàn kháng va chạm và 

an toàn kháng tiền ảnh. 
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I. INTRODUCTION 

A cryptographic hash function is a function 

which takes an input of arbitrary length and 

returns an output of fixed length. A general way 

of hashing messages of arbitrary length is to 

repeat a compression function using some general 

structures, e.g. Merkle-Damgard, HAIFA... A 

base compression function can be built from a 

mishmash of components or based on 

cryptographic primitives such as block ciphers. 

Block cipher-based compression functions 

have been extensively studied. The most 

common approach is to build a 2𝑛-bit to 𝑛-bit 

compression function using a block cipher of 

𝑛-bit block length, namely a single-block-

length (SBL) compression function. However, 

such an SBL compression function may be 

susceptible to collision attacks because of its 

short output length. For example, we can 

successfully execute a birthday attack on an 

SBL compression function based on the AES-

128 that only approximates 264 queries. This 

prompted the study of double-block-length 

(DBL) compression functions which have the 

output length double the block length of the 

base block cipher. 

DBL compression function can be classified 

into 2 classes: The first class are compression 

functions that use a block cipher with the key 

length of 𝑛-bit, i.e. 𝐸: {0,1}𝑛 × {0,1}𝑛 → {0,1}𝑛, 
denoted by 𝐷𝐵𝐿𝑛. The second class are 

compression functions that use a block cipher 

with the key length of 2𝑛-bit, i.e. 𝐸: {0,1}2𝑛 ×
{0,1}𝑛 → {0,1}𝑛, denoted by 𝐷𝐵𝐿2𝑛. This class 

consists of Tandem-DM [1] and Abreast-DM [1], 

Hirose’s scheme [2], Stam’s Type-I compression 

function [3] and general constructions of Hirose 

[4] and Ozen and Stam construction [5]. All the 

above compression functions provide optimal 
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collision security (up to 2𝑛 queries), Tandem-

DM, Abreast-DM and Hirose’s scheme have also 

proven to be optimal preimage resistance (up to 

22𝑛 queries). 

Recently, there have been some proposed 

compression schemes such as Weimar-DM [6], 

and MR-MMO [7]. The Weimar-DM scheme 

uses two different keys for two block ciphers in a 

compression function call and is proven secure in 

the ideal cipher model (ICM). The MR-MMO 

scheme claimed by the author is more effective 

when using only one key for both block ciphers in 

a compression function call, but is proven in the 

weak cipher model (WCM). The MR-MMO is 

claimed that its collision resistance security bound 

is tighter than Weimar-DM’s one but it is not valid 

in our understanding of the matter. The first 

reason is that Weimar-DM is considered in the 

ICM while MR-MMO is studied in the WCM. 

Secondly, there is an incorrect statement in the 

proof for MR-MMO’s collision security bound. 

More precisely, in [7] the authors stated that:  

Pr[𝐶𝑗] ≤
2(𝑗 − 1)

(2𝑛 − (2𝑗 − 1))
2 ≤

2(𝑗 − 1)

22𝑛
, 

for 𝑗 ≤ 𝑞. It is clear that this statement is wrong 

which implies that the collision resistance 

security bound is incorrect. On the other hand, 

the two schemes are in the class of cyclic 

compression functions [8], which have been 

shown to be secure generally. 

TABLE  1. THE ANALYSIS RESULTS OF SOME DOUBLE 

BLOCK LENGTH COMPRESSION FUNCTIONS [6], [8]-[10] 

THAT USES BLOCK CIPHER WITH THE KEY LENGTH OF 

256 BITS AND THE BLOCK LENGTH OF 128 BITS 

Scheme 
Collision 

resistance 

Preimage 

resistance 

Key 

schedule 

Alpha-DBL 2126.73 2251 2 

Weimar-DM 2126.23 2251 2 

Hirose-DM 2124.55 2251 1 

Abreast-DM 2124.42 2246 2 

Tandem-DM 2120.87 2246 2 

In this paper, we propose a new compression 

scheme and demonstrate its security under the 

ICM. The rest of the paper is structured as 

follows: Section II presents some basic concepts 

about the iterated hash functions and the ideal 

cipher model. Section III presents the definition 

of the Alpha-DBL scheme. Section IV analyzes 

the collision resistance and preimage resistance 

of the proposed scheme. Finally, the conclusion 

is presented in Section V. 

II. PRELIMINARIES 

A. Iterated hash function 

Let 𝐻: {0,1}∗ → {0,1}𝑙 be a hash function 

which often consists of a compression function 

𝐹: {0,1}𝑙 × {0,1}𝑙′
→ {0,1}𝑙 and a fixed initial 

value 𝐻0 ∈ {0,1}𝑙. An input message 𝑀 (after 

unambiguous padding) is divided into the 𝑙′-bit 

blocks 𝑀1, 𝑀2, ⋯ , 𝑀𝑙. Then, 𝐻𝑖 = 𝐹(𝐻𝑖−1, 𝑀𝑖) is 

computed successively for 1 ≤ 𝑖 ≤ 𝑙 and 𝐻𝑙 =
𝐻(𝑀). 𝐻 is called an iterated hash function. 

B. Ideal cipher model 

A (𝑚, 𝑛) block cipher is a function 

𝐸: {0,1}𝑚 × {0,1}𝑛 → {0,1}𝑛 such that 𝐸(𝐾,⋅) is 

a permutation on {0,1}𝑛 for 𝐾 ∈ {0,1}𝑚. 

Namely, 𝑚 is the key length and and 𝑛 is the 

block length of the block cipher 𝐸. Normally, we 

write 𝐸𝐾(𝑋) instead of 𝐸(𝐾, 𝑋) for 𝐾 ∈
{0,1}𝑚, 𝑋 ∈ {0,1}𝑛. Let 𝐸𝐾

−1(⋅) denotes the 

inverse of 𝐸𝐾(⋅). 

Ideal cipher model. Let 𝑚, 𝑛 be positive 

integers, denote  

𝐵𝐶(𝑚, 𝑛)      

= {
𝐸: {0,1}𝑚 × {0,1}𝑛 → {0,1}𝑛|∀𝐾 ∈ {0,1}𝑚,

𝐸𝐾(⋅)  be a permutation on {0,1}𝑛 } 

In the ideal cipher model, a block cipher 𝐸 is 

randomly chosen from 𝐵𝐶(𝑚, 𝑛). It’s allowed 2 

types of query to 𝐸𝐾(𝑋) or 𝐸𝐾
−1(𝑌) for 𝑋, 𝑌 ∈

{0,1}𝑛, 𝐾 ∈ {0,1}𝑚. X, Y and K are plaintext, 

ciphertext and key, respectively. The answer of a 

backward query 𝐸𝐾
−1(𝑌) is 𝑋 ∈ {0,1}𝑛 such that 

𝐸𝐾(𝑋) = 𝑌. 

In this paper, we only study the case 𝑚 = 2𝑛 

and denote 𝑁 = 2𝑛. 

Advantages of collision and preimage 

resistance. Let 𝐹: {0,1}3𝑛 → {0,1}2𝑛 be a 

compression function based on an ideal block 

cipher 𝐸 ∈ 𝐵𝐶(2𝑛, 𝑛), and let 𝒜 be an 

information-theoretic adversary who has access 

to an oracle 𝐸 or 𝐸−1. Then, it carries out the 

experiment 𝐄𝐱𝐩𝒜
𝐶𝑜𝑙𝑙 as illustrated in Table 2a, in 

order to quantify the collision resistance security 

of 𝐹. The experiment will record all the queries 
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made by the adversary 𝒜 in a query history, 

denoted by 𝒬. A tuple (𝑋, 𝐾, 𝑌) ∈ 𝒬 if 𝒜 ask 

𝐸𝐾(𝑋) and receive an answer 𝑌 or ask 𝐸𝐾
−1(𝑌) 

and receive an answer 𝑋. For 𝐴 ∈ {0,1}3𝑛, 𝐵 ∈
{0,1}2𝑛, we write 𝐴 ⇒𝒬 𝐵 if there exists a query 

pair (𝑋1, 𝐾1, 𝑌1), (𝑋2, 𝐾2, 𝑌2) ∈ 𝒬 such that 𝒜 

have the computation 𝐹(𝐴) = 𝐵 using this 

query pair. 

The advantage of 𝒜 finding a collision is 

defined as  

𝐴𝑑𝑣𝐹
𝐶𝑜𝑙𝑙(𝒜) = Pr[𝐄𝐱𝐩𝒜

𝐶𝑜𝑙𝑙 = 1]. 

The probability is taken over random block 

cipher 𝐸. For 𝑞 > 0, we define 𝐴𝑑𝑣𝐹
𝐶𝑜𝑙𝑙(𝑞) be 

the maximum of 𝐴𝑑𝑣𝐹
𝐶𝑜𝑙𝑙(𝒜) over all 

adversaries that ask at most 𝑞 oracle queries.  

TABLE  2. EXPERIMENTS DETERMINE THE ADVANTAGES 

OF COLLISION AND PREIMAGE RESISTANCE 

Experiment 𝐄𝐱𝐩𝓐
𝑪𝒐𝒍𝒍 Experiment 𝐄𝐱𝐩𝓐

𝑷𝒓𝒆 

𝐸
$

← 𝐵𝐶(2𝑛, 𝑛)  

𝒜𝐸,𝐸−1
update 𝒬  

If ∃𝐴 ≠ 𝐴′, 𝐵 such that  

𝐴 ⇒𝒬 𝐵 and 𝐴′ ⇒𝒬 𝐵  

then return 1  

else return 0  

𝐸
$

← 𝐵𝐶(2𝑛, 𝑛) 

𝒜 chooses 𝐵 ∈ {0,1}2𝑛 

𝒜(𝐵)𝐸,𝐸−1
update 𝒬 

If ∃ 𝐴 such that 𝐴 ⇒𝒬 𝐵  

then return 1 

else return 0  

(a) Experiment for 

finding a collision 

(b) Experiment for 

finding a preimage 

The advantage of 𝒜 finding a preimage is 

defined similarly using the experiment 𝐄𝐱𝐩𝒜
𝑃𝑟𝑒 as 

in Table 2b. The adversary 𝒜 chooses an image 

target 𝐵 ∈ {0,1}2𝑛 before it asks queries. The 

advantage of 𝒜 finding a preimage is defined as 

𝐴𝑑𝑣𝐹
𝑃𝑟𝑒(𝒜) = Pr[𝐄𝐱𝐩𝒜

𝑃𝑟𝑒 = 1]. 

The probability is taken over random block 

cipher 𝐸. For 𝑞 > 0, we define 𝐴𝑑𝑣𝐹
𝑃𝑟𝑒(𝑞) be the 

maximum of 𝐴𝑑𝑣𝐹
𝑃𝑟𝑒(𝒜) over all adversaries 

that ask at most 𝑞 oracle queries. 

The advantage of 𝒜 finding a 

collision/preimage of an iterated hash function is 

defined similarly. 

In this model, the experiments make a 

decision based on the history of the adversary’s 

queries to encryption/decryption oracles. 

However, the adversary may, without asking 

anything from the oracles, try to construct a 

collision or a preimage, for example, to guess. 

But in this case, the complexity of constructing a 

collision is greater or equal than 𝑂(2𝑛) (the 

optimal bound) and a preimage is greater or equal 

than 𝑂(22𝑛) because we don’t know anything 

about the structure of the compression function. 

III. DEFINITION OF ALPHA-DBL SCHEME 

We propose a new DBL compression function 

that does not belong to the class of cyclic 

compression functions and demonstration its 

security in the ICM. The main idea of proof is 

according to in [6]. The proposed compression 

function uses two parallel secure single block 

length schemes, called Alpha-DBL (see Fig. 1, 

the name of the proposed scheme rises from its 

shape is like the symbol “𝛼”), which are 

described as follows:  

  

Fig. 1. The compression function Alpha-DBL.  

The black circle “•” denotes a bit complement. 

Definition 1. Let 𝐸 be a block cipher which has 

an 2𝑛-bit key and an 𝑛-bit block size. Let 

𝐹𝐴𝑙𝑝ℎ𝑎: {0,1}3𝑛 → {0,1}2𝑛 be a compression 

function such that (𝐺𝑖 , 𝐻𝑖) =
𝐹𝐴𝑙𝑝ℎ𝑎(𝐺𝑖−1, 𝑀𝑖, 𝐻𝑖−1) where 

𝐺𝑖 , 𝐻𝑖 , 𝑀𝑖 , 𝐺𝑖−1, 𝐻𝑖−1 ∈ {0,1}𝑛. 𝐹𝐴𝑙𝑝ℎ𝑎 is defined 

as follows:  

{
𝐺𝑖 = 𝐸𝑀𝑖||�̅�𝑖−1

(𝐺𝑖−1 ⊕ 𝑀𝑖) ⊕ 𝐺𝑖−1 ⊕ �̅�𝑖−1 ⊕ 𝑀𝑖

𝐻𝑖 = 𝐸�̅�𝑖||𝐻𝑖−1
(𝐺𝑖−1 ⊕ 𝑀𝑖) ⊕ 𝐺𝑖−1 ⊕ 𝐻𝑖−1 ⊕ 𝑀𝑖

 

where �̅� denotes the bit-by-bit complement of H. 

IV. PROVABLE SECURITY OF ALPHA-DBL 

A. Collision resistance security 

Theorem 1. Let 𝐹𝐴𝑙𝑝ℎ𝑎: {0,1}3𝑛 → {0,1}2𝑛 be a 

compression function based on block cipher as 

defined in Definition 1. Then,  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝑞) ≤

𝑞(𝑞 − 1)

(𝑁 − 𝑞)2
. 
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Proof. Consider an arbitrary adversary 𝒜 has 

made 𝑞 queries to 𝐸 or 𝐸−1 in order to attain a 

collision for the compression function 𝐹𝐴𝑙𝑝ℎ𝑎. 𝒜 

will record a query history 𝒬 = {𝑄𝑖}𝑖=1
𝑞

, where 

𝑄𝑖 = (𝑋𝑖, 𝐾𝑖 , 𝑌𝑖) such that 𝐸𝐾𝑖
(𝑋𝑖) = 𝑌𝑖. Note 

that the adversary 𝒜 never asks a query to which 

it already knows the answer. We build a more 

powerful adversary 𝒜′ which copies 𝒜 but it can 

ask an extra query to 𝐸 in some cases. Therefore, 

we just need to find an upper bound of the 

advantage of 𝒜′ finding a collision for 𝐹𝐴𝑙𝑝ℎ𝑎. 

The adversary 𝒜′ maintains a list ℒ (be null 

at the beginning) that represents any possible 

input/output of the compression function 𝐹𝐴𝑙𝑝ℎ𝑎 

computed by adversary 𝒜. An element 𝐿 ∈ ℒ is 

a quad-tuple (𝑋, 𝐾, 𝑌, 𝑌′) ∈ {0,1}5𝑛 where 𝑋 ∈
{0,1}𝑛, 𝐾 ∈ {0,1}2𝑛 is the 3𝑛-bit input to 

compression function such that 𝐾 = (�̅�𝑖, 𝐻𝑖−1) 

and 𝑋 = 𝐺𝑖−1 ⊕ 𝑀𝑖. The 𝑛-bit values 𝑌, 𝑌′ can 

be computed by 𝑌 = 𝐸𝐾(𝑋) and 𝑌′ = 𝐸�̅�(𝑋). 

Let’s define a collision in the list. Fix two 

integers 𝑎, 𝑏 with 𝑎 ≠ 𝑏, such that 𝐿𝑎 =
(𝑋𝑎 , 𝐾𝑎 , 𝑌𝑎 , 𝑌𝑎′) represents the 𝑎-th element in ℒ 

and 𝐿𝑏 = (𝑋𝑏, 𝐾𝑏, 𝑌𝑏, 𝑌𝑏′) is the 𝑏-th element in 

ℒ. We say that 𝐿𝑎 and 𝐿𝑏 “collide” if we can find 

a collision using the query results given in 𝐿𝑎 and 

𝐿𝑏. This event occurs if and only if one of the 

following two conditions is satisfied:   

(i) 𝑌𝑎 ⊕ 𝑋𝑎 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎) 
= 𝑌𝑏 ⊕ 𝑋𝑏 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑏) and  
𝑌𝑎

′ ⊕ 𝑋𝑎 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑎) 
= 𝑌𝑏′ ⊕ 𝑋𝑏 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑏)   ,

(ii) 𝑌𝑎 ⊕ 𝑋𝑎 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎) 
= 𝑌𝑏

′ ⊕ 𝑋𝑏 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑏) and  
𝑌𝑎

′ ⊕ 𝑋𝑎 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑎) 
= 𝑌𝑏 ⊕ 𝑋𝑏 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑏),  

where 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾) and 𝐿𝑒𝑓𝑡𝑚𝑜𝑠𝑡𝑛(𝐾) are 

𝑛 bits farthest to the right and 𝑛 bits farthest to 

the left of 𝐾, respectively. 

Indeed, the condition (i) implies a collision 

pair (𝐺𝑎 , 𝐻𝑎 , 𝑀𝑎), (𝐺𝑏, 𝐻𝑏 , 𝑀𝑏) with 

𝐻𝑎 = 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎), 
𝑀𝑎 = 𝐿𝑒𝑓𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎), 𝐺𝑎 = 𝑋𝑎 ⊕ 𝑀𝑎 ,  
𝐻𝑏 = 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑏), 
𝑀𝑏 = 𝐿𝑒𝑓𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑏), 𝐺𝑏 = 𝑋𝑏 ⊕ 𝑀𝑏. 

The condition (ii) implies a collision pair 
(𝐺𝑎 , 𝐻𝑎 , 𝑀𝑎), (𝐺𝑏, 𝐻𝑏, 𝑀𝑏) with  

𝐻𝑎 = 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎), 
𝑀𝑎 = 𝐿𝑒𝑓𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑎), 𝐺𝑎 = 𝑋𝑎 ⊕ 𝑀𝑎 , 
𝐻𝑏 = 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑏), 
𝑀𝑏 = 𝐿𝑒𝑓𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑏), 𝐺𝑏 = 𝑋𝑏 ⊕ 𝑀𝑏. 

Construction of the list: The adversary 𝒜 will 

make a query number 𝑖 to 𝐸 or 𝐸−1 for 1 ≤ 𝑖 ≤
𝑞. Then the adversary gets a triple-tuple 

(𝑋𝑖, 𝐾𝑖 , 𝑌𝑖) such that 𝐸𝐾𝑖
(𝑋𝑖) = 𝑌𝑖 in case of a 

forward query and 𝐸𝐾𝑖

−1(𝑌𝑖) = 𝑋𝑖 in case of a 

backward query. In either case, the value 𝑋𝑖 ⊕
𝑌𝑖 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑖) is randomly determined 

by the output of the query. 

Now, 𝒜′ checks if an entry 𝐿 = (𝑋𝑖, 𝐾𝑖 ,∗,∗) or 

𝐿′ = (𝑋𝑖, 𝐾𝑖 ,∗,∗) belongs to the recent list ℒ, 

where “∗” is an arbitrary value. Obviously, there 

are 2 scenarios: both 𝐿, 𝐿′ are not in ℒ, or both of 

them are already in ℒ. Indeed, if 𝐿𝑖: =
(𝑋𝑖, 𝐾𝑖 , 𝑌𝑖 , 𝑌𝑖′) ∈ ℒ then we also have 𝐿𝑖: =
(𝑋𝑖, 𝐾𝑖 , 𝑌𝑖′, 𝑌𝑖) ∈ ℒ. 

Scenario 1: If 𝐿 or 𝐿′ are not in ℒ. Then 𝒜′ will 

make an additional forward query 𝑌𝑖′ = 𝐸�̅�𝑖
(𝑋𝑖). 

Since 𝐾𝑖 ≠ 𝐾𝑖 for every 𝐾𝑖 ∈ {0,1}𝑛 then the 

value of 𝑌𝑖′ is independently and randomly 

distributed with 𝑌𝑖. Then, the adversary sets  

𝐿𝑖: = (𝑋𝑖, 𝐾𝑖 , 𝑌𝑖 , 𝑌𝑖′) 

and appends to the list ℒ. 

Let 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖, for 1 ≤ 𝑖 ≤ 𝑞, be the event that 

the 𝑖𝑡ℎ success, i.e. there exists 𝑗 < 𝑖 such that 𝐿𝑖 

collide with 𝐿𝑗. For 1 ≤ 𝑗 < 𝑖, we have:  

Pr [
𝑋𝑖 ⊕ 𝑌𝑖 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑖)

= 𝑋𝑗 ⊕ 𝑌𝑗 ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑗)
] ≤

1

𝑁 − 𝑞
  

and  

Pr [
𝑋𝑖 ⊕ 𝑌𝑖

′ ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(�̅�𝑖)

= 𝑋𝑗 ⊕ 𝑌𝑗′ ⊕ 𝑅𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡𝑛(𝐾𝑗)
] ≤

1

𝑁 − 𝑞
. 

Since these above events are independent then 

the probability of condition (i) occurring is at 

most 
1

(𝑁−𝑞)2
. Similarly, the probability of 

condition (ii) occurring is at most 
1

(𝑁−𝑞)2
. 

Therefore, the probability of success of the 𝑖𝑡ℎ 

query is  

Pr[𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖] ≤ ∑

𝑖−1

𝑗=1

2

(𝑁 − 𝑞)2
=

2(𝑖 − 1)

(𝑁 − 𝑞)2
. 
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 Thus, the total probability of success for 𝑞 

queries is  

Pr[𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑞)] ≤ ∑ Pr[𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖] ≤
𝑞(𝑞 − 1)

(𝑁 − 𝑞)2

𝑞

𝑖=1

. 

Scenario 2: Both 𝐿 and 𝐿′ are in ℒ. Therefore, 

𝒜′ ignores this query and we know that 𝒜 has 

no chance of winning. 

 Therefore, the probability of the adversary 

𝒜′ success is  

𝐴𝑑𝑣
𝐹𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝒜′) ≤

𝑞(𝑞 − 1)

(𝑁 − 𝑞)2
. 

Now, we return to evaluate the advantage of 

𝒜. We have  

𝐴𝑑𝑣
𝐹𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝒜) ≤ 𝐴𝑑𝑣

𝐹𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝒜′) ≤

𝑞(𝑞 − 1)

(𝑁 − 𝑞)2
. 

Since 𝒜 is an arbitrary 𝑞-query adversary then  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝑞) ≤

𝑞(𝑞 − 1)

(𝑁 − 𝑞)2
. 

 We can easily get the following corollary:  

Corollary 1. Let 𝐹𝐴𝑙𝑝ℎ𝑎: {0,1}3𝑛 → {0,1}2𝑛 be 

a compression function based on block cipher 

as defined in Definition 1. Then for 𝑞 ≤ 2𝑛−1.27 

we have  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝐶𝑜𝑙𝑙 (𝑞) ≤

1

2
+ 𝑜(1) 

where 𝑜(1) tends to 0 when 𝑛 tends to infinity. 

Proof. Firstly, it can be seen that the right hand 

side of Theorem 1 is an increasing function in 𝑞 

for 𝑞 < 𝑁. Consider  

𝑞(𝑞 − 1)

(𝑁 − 𝑞)2
=

1

2
. 

We get  

𝑞 ≈ 𝑁(√2 − 1) = 2𝑛−1.27. 

Applying Theorem 1, we have the proof. 

For example, for 𝑛 = 128 Corollary 1 implies 

that any adversary making less than 2126.73 

queries cannot find a collision with probability 

greater than 1/2. 

The MD-strengthening design preserves 

collision resistance (see Theorem 2.4.1, [11]). 

Combining this with Theorem 1, we get the 

following theorem:  

Theorem 2. Let 𝐻 be an iterated hash function 

built on the compression function 𝐹 defined in 

Definition 1. Then  

 𝐴𝑑𝑣𝐻
𝐶𝑜𝑙𝑙(𝑞) ≤

𝑞(𝑞−1)

(𝑁−𝑞)2
, for every 1 ≤ 𝑞 < 𝑁.  

B. Preimage resistance security 

Theorem 3. Let 𝐹𝐴𝑙𝑝ℎ𝑎: {0,1}3𝑛 → {0,1}2𝑛 be a 

compression function based on block cipher as 

defined in Definition 1. Then  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝑃𝑟𝑒 (𝑞) ≤

16𝑞

𝑁2
. 

Proof. The idea of the proof follows the proofs of 

Theorems 1 and 2 in [9]. Let 𝑈||𝑉 ∈ {0,1}2𝑛 be 

the preimage target (chosen by the adversary 

before he mounts any query to 𝐸). We need to 

upper bound the probability that the adversary 

finds a point 𝐴||𝐿||𝑀 ∈ {0,1}3𝑛 such that 

𝐹𝐴𝑙𝑝ℎ𝑎(𝐴, 𝐿, 𝑀) = (𝑈, 𝑉) using 𝑞 queries. 

We also reuse the notion of free queries and 

super queries [9]:   

 After the adversary asks a forward query 

𝐸�̅�||𝑀(𝐴 ⊕ 𝐿), it is given the answer of the query 

𝐸𝐿||�̅�(𝐴 ⊕ 𝐿) for free. Similarly, if the adversary 

makes a backward query 𝐸�̅�||𝑀
−1 (𝑅), and receives 

an answer 𝐴 ⊕ 𝐿 = 𝐸�̅�||𝑀
−1 (𝑅) then the answer of 

the forward query 𝐸𝐿||�̅�(𝐴 ⊕ 𝐿) is given for free. 

Therefore, the entries of the adversary’s query 

history 𝒬 can be grouped into adjacent pairs of 

the form (𝐴 ⊕ 𝐿, �̅�||𝑀, 𝑅), (𝐴 ⊕ 𝐿, 𝐿||�̅�, 𝑆), 

namely “adjacent query pair”.  

 After completing each adjacent query 

pair, we check whether the key 𝐾 ∈ {0,1}2𝑛 

used for the latest query satisfies the query 

history contains exactly 𝑁/2 queries with this 

key. If this occurs, all remaining queries under 

the key 𝐾 and the remaining queries under key 

𝐾 will be given to the adversary for free. We add 

these 𝑁/2 free query pairs to the query history. 

Since the adversary is assumed never to make a 

query to which it knows the answer, then the 

adversary cannot make any more queries under 

this key after these free queries have been added 

into the query history. We say that a super query 

occurs if and only if 𝑁/2 free query pairs are 

given to the adversary. Note that a super query 
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is the set of 𝑁/2 free query pairs that returned 

to the adversary.  

An adjacent query pair (𝐴 ⊕ 𝐿, �̅�||𝑀, 𝑅), 

(𝐴 ⊕ 𝐿, 𝐿||�̅�, 𝑆) is called “winning” if  

𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑈 and 𝐴 ⊕ 𝐿 ⊕ 𝑆 ⊕ �̅� = 𝑉, 

or if  

𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑉 and 𝐴 ⊕ 𝐿 ⊕ 𝑆 ⊕ �̅� = 𝑈. 

Therefore, if the adversary obtains a winning 

adjacent query pair then it obtains a preimage of 

𝑈||𝑉. In addition, the winning query pair is part 

of a super query or not. Let 

𝑆𝑢𝑝𝑒𝑟𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬) and 

𝑁𝑜𝑟𝑚𝑎𝑙𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬) be the event that the 

adversary obtains a winning query pair that is 

part of a super query and normal queries, 

respectively. Therefore, we need to upper bound  

Pr[𝑆𝑢𝑝𝑒𝑟𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬)]
+ Pr[𝑁𝑜𝑟𝑚𝑎𝑙𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬)]. 

When the event 𝑁𝑜𝑟𝑚𝑎𝑙𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬) 

occurs. Assume that the adversary asks a forward 

query 𝐸�̅�||𝑀(𝐴 ⊕ 𝐿), then at most (𝑁/2 − 2) 

queries (including free queries) have been 

previously answered with the key �̅�||𝑀. It’s 

implies that,  

Pr[𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑈] ≤
2

𝑁
. 

If 𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑈 then the probability 

of the free query 𝐸𝐿||�̅�(𝐴 ⊕ 𝐿) returns 𝐴 ⊕ 𝐿 ⊕

𝑉 ⊕ 𝑀 that is at most 1/(𝑁/2) = 2/𝑁, since the 

answer to the free query comes uniformly at 

random from a set of size at least 𝑁/2 + 2 >
𝑁/2. Therefore, we have  

Pr [
(𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑈) ∧

(𝐴 ⊕ 𝐿 ⊕ 𝑆 ⊕ �̅� = 𝑉)
] ≤

4

𝑁2
. 

Similarly,  

Pr [
(𝐴 ⊕ 𝐿 ⊕ 𝑅 ⊕ 𝑀 = 𝑉) ∧

(𝐴 ⊕ 𝐿 ⊕ 𝑆 ⊕ �̅� = 𝑈)
] ≤

4

𝑁2
. 

Moreover, since the adversary makes 𝑞 

queries total then we have  

Pr[𝑁𝑜𝑟𝑚𝑎𝑙𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬)] ≤
8𝑞

𝑁2
. (1) 

 In case the event 𝑆𝑢𝑝𝑒𝑟𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬) 

occurs. Assume that a super query occur on keys 

�̅�||𝑀 and 𝐿||�̅�, then the value of 𝐸�̅�||𝑀(. ) and 

𝐸𝐿||�̅�(. ) is already known on exactly 𝑁/2 points. 

Let 𝒟 and ℛ be the domain and the range of that 

super query, respectively. If 𝐴 ⊕ 𝐿 ∈ 𝒟 then the 

probability that 𝐸�̅�||𝑀(𝐴 ⊕ 𝐿) ⊕ 𝐴 ⊕ 𝐿 ⊕ 𝑀 =

𝑈 is either 0 if 𝐴 ⊕ 𝐿 ⊕ 𝑀 ⊕ 𝑈 ∉ ℛ, or is 

exactly 2/𝑁 if 𝐴 ⊕ 𝐿 ⊕ 𝑀 ⊕ 𝑈 ∈ ℛ. Thus, the 

probability that 𝐸�̅�||𝑀(𝐴 ⊕ 𝐿) ∈ {𝑈 ⊕ 𝐴 ⊕ 𝐿 ⊕

𝑀, 𝑉 ⊕ 𝐴 ⊕ 𝐿 ⊕ 𝑀} is at most 4/𝑁. 

If 𝐸�̅�||𝑀(𝐴 ⊕ 𝐿) ∈ {𝑈 ⊕ 𝐴 ⊕ 𝐿 ⊕ 𝑀, 𝑉 ⊕

𝐴 ⊕ 𝐿 ⊕ 𝑀}, then the probability that 

𝐸𝐿||�̅�(𝐴 ⊕ 𝐿) ∈ {𝑈 ⊕ 𝐴 ⊕ 𝐿 ⊕ �̅�, 𝑉 ⊕ 𝐴 ⊕

𝐿 ⊕ �̅�} is at most 1/(𝑁/2). Therefore, the 

probability that the super query produces a 

winning pair of adjacent queries is at most 
𝑁

2
×

8

𝑁2
=

4

𝑁
. Since there are at most 𝑞/(𝑁/2) super 

queries, we have  

Pr[𝑆𝑢𝑝𝑒𝑟𝑄𝑢𝑒𝑟𝑦𝑊𝑖𝑛(𝒬)] ≤
8𝑞

𝑁2
. (2) 

 Combining (1) with (2) completes the proof.  

Corollary 2. Let 𝐹𝐴𝑙𝑝ℎ𝑎: {0,1}3𝑛 → {0,1}2𝑛 be a 

compression function based on block cipher as 

defined in Definition 1. Then  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝑃𝑟𝑒 (22𝑛−5) ≤

1

2
. 

Proof. Considering 𝑞 ≤
1

32
𝑁2. Applying 

Theorem 3, we have  

𝐴𝑑𝑣𝐴𝑙𝑝ℎ𝑎
𝑃𝑟𝑒 (22𝑛−5) ≤

1

2
. 

For example, for 𝑛 = 128 Corollary 2 

implies that any adversary making less than 

2251 queries cannot find a preimage with a 

considerable probability. 

The Merkle-Damgard design also preserves 

preimage resistance (see Theorem 2.4.2, [11]). 

Combining Theorem 3 with Theorem 2.4.2 [11], 

we get the preimage resistance of a hash function 

composed of 𝐹 in Definition 1.  

Theorem 4. Let 𝐻 be an iterated hash function 

built on the compression function 𝐹 specified in 

Definition 1. Then  

𝐴𝑑𝑣𝐻
𝑃𝑟𝑒(𝑞) ≤

16𝑞

𝑁2
. 
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V. CONCLUSION 

 In this paper, we have proposed a double 

block length compression function called 

Alpha-DBL. We have shown very tight 

collision security bound for the proposed 

scheme. To our knowledge, the collision 

security bound of the proposed scheme is nearly 

better than other double block length schemes. 

On the other hand, the proposed scheme also 

achieves the same preimage security bound as 

the Weimar-DM scheme, which is nearly the 

best second preimage security bound. Using our 

compression function in the iterated hash 

function construction can preserve the collision 

resistance and preimage resistance security. 

Moreover, it is shown in [12] that under certain 

conditions, collision resistance implies second 

preimage resistance. Thus, we conclude that our 

proposed hash function is second preimage 

resistance as well. 
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