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Abstract— In this paper, the iterative scheme, 

namely the  -scheme, is proposed constructing 

block ciphers. Then, the pseudorandomness and 

superpseudorandomness of this scheme are 

evaluated by using the Patarin’s H-coefficient 

technique. In particular, the pseudorandomness of 

 -scheme is achieved in the case that the number of 

round is at least 3, and  -scheme is 

superpseudorandomness in the case that the 

number of round is greater than or equal 5. 

However, we have not yet evaluated 

superpseudorandomness of this scheme when the 

round is 4.   

 Tóm tắt— Trong bài báo này, chúng tôi đưa ra 

lược đồ lặp gọi là lược đồ   dùng để xây dựng mã 

khối. Sau đó, đưa ra các kết quả đánh giá tính giả 

ngẫu nhiên và siêu giả ngẫu nhiên của lược đồ này 

được đưa ra dựa trên kỹ thuật hệ số H của Patarin. 

Trong đó, tính giả ngẫu nhiên của lược đồ đạt được 

khi số vòng của lược đồ là lớn hơn hoặc bằng 3. Đối 

với tính siêu giả ngẫu nhiên, chúng tôi đã chứng 

minh lược đồ đạt được khi số vòng lớn hơn hoặc 

bằng 5; còn khi số vòng bằng 4 chúng tôi chưa giải 

quyết được trong bài báo này. 

Keywords: block cipher structure, 

pseudorandomness; superpseudorandomness; H-

coefficient technique. 

Từ khóa: cấu trúc mã khối, giả ngẫu nhiên; siêu 

giả ngẫu nhiên; kỹ thuật hệ số H. 

I. INTRODUCTION 

In order to construct a secure block cipher, the 

scheme of block cipher structure  plays an 

important role. Cryptographic designers usually 

choose a scheme based on structures such as SPN, 

Feistel, ARX,… and evaluate security of these 

scheme by their pseudorandomness and 

superpseudorandomness [1-5] which are described 

in [6]. The pseudorandomness and 

superpseudorandomness of schemes will ensure 
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that an attacker which have unbounded (but finite) 

computation capabilities, can not distinguish the 

scheme from a perfect random function 

(permutation) with a non-negligible probability. In 

this model, a block cipher is considered as a 

random function (or a random permutation) 

associated with a randomly selected key. In [8], 

Henri Gilbert and Marine Minier stated that the 

strongest security requirement one can put on a   

random function or permutation representing a 

key dependent cryptographic function is that   be 

undistinguishable with a non-negligible success 

probability from a perfect random function   
 or 

permutation   , even if a probabilistic testing 

algorithm   of unlimited power is used for 

that purpose. 

Related results. The pseudorandomness and 

superpseudorandomness of a block cipher 

structure have been attracting research attention in 

the cryptography community. In 1988, Luby and 

Rackoff proposed the formal definitions of 

pseudorandomness and superpseudorandomness 

of block ciphers in [6]. In addition, they 

demonstrated that the 3-round Feistel structure is 

pseudorandomness and 4-round Feistel structure is 

superpseudorandomness. Patarin presented the H-

coefficient technique and used it to prove these 

two results (see [7]). In [8], Gilbert and Minier 

used a simpler but rather effective approach based 

on Patarin’s two main theorems to evaluate the 

pseudorandomness and superpseudorandomness 

for L and R schemes. In addition, at the SAC 

conference in 2009, Patarin systematized his 

theorems and formally introduced the H-

coefficient technique to evaluate the secure of 

some block cipher schemes (see [7]). Hence, the 

H-coefficient technique is indeed an effective 

method for evaluating the secure of some 

encryption schemes and it is improved 

continuously (see [9]). For the SPN structure, the 

results of pseudorandomness and 

superpseudorandomness are actually attracting 

research attention in the world [10, 11].  

 

Evaluating pseudorandomness and 

superpseudorandomness of the iterative 

scheme to build SPN block cipher 
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However, the approach of these results are 

based on the assumption that S-boxes are random 

permutation and diffusion layer is not specific in 

the evaluation model which makes it is difficult 

to evaluate.  

Our contribution. In this paper, we 

considered the   scheme for constructing a SPN 

block cipher where the pseudorandomness and 

superpseudorandomness are evaluated in detail 

based on the H-coefficient technique. Specifically, 

the pseudorandom distinguishers with a non-

negligible probability for 1-round and 2-round of 

scheme are given. Then, the theoretical result 

represented that 3-round  -scheme is 

pseudorandomness. Finally, the 

superpseudorandomness of  -scheme is considered. 

Outline. This paper organized as follows: 

Section 2 represents some notations, security 

models and methods using Patarin’s H-coefficient 

technique. Section 3 describes the iterative 

scheme considered in this paper. Section 4 and 5 

respectively show the evaluation results of the 

pseudorandomness and superpseudorandomness 

of our scheme. Finally, some conclusions and an 

open problem are given. 

II. PRELIMINARIES 

A. Notations 

Through this paper we are using the following 

notation:    denotes the   
 ,      denotes the set of 

functions from    into   ,    denotes the set of 

functions from    into        denotes the set of 

permutations on   : thus |    |       
. 

B. The security model 

First, we represent the definition of a 

pseudorandom distinguisher as follows: 

Definition 1 ([12]). Let      . A 

pseudorandom distinguisher is a deterministic 

algorithm   with unbounded (but finite) 

computation capabilities, which given a function 

        can query it by asking values      of 

which it obtains the image    ( ). Depending 

on the answers      it obtains,   output either 

0 or 1. 

A random function of      is defined as a 

random variable   of      and can be view as a 

probabilitiy distribution (  [   ])      
 over 

    . A random function (a random permutation, 

respective) is a function (permutation) which is 

randomly chosen from     (  ) with a fixed 

probability. Thus, we have the definition of a 

perfect random function (perfect random 

permutation) as follows: 

Definition 2 ([8]). We define a perfect 

random function    of      as a uniformly drawn 

element of     . In other words,    is associated 

with the uniform probability distribution over 

    . We define a    perfect random permutation 

on    as a uniformly drawn element of   . In other 

words,    is associated with the uniform 

probability distribution over   . 

Next, we define the advantage of a 

distinguisher   in distinguishing a random 

function   from a perfect random function   : 

Definition 3 ([12]). Let   be a random 

function,    be a perfect random function. The 

advantage a pseudorandom distinguisher   has 

in distinguishing   from    is: 

     |  [    ]    [   
  ]|   (1) 

Pseudorandom distinguishers as defined 

above are allowed to make encryption queries 

only. Superpseurandom distinguishers are allowed 

to make decryption queries: 

Definition 4 ([12]). Let    . A 

superpseudorandom distinguisher is a 

deterministic algorithm   with unbounded (but 

finite) computation capabilities, which can query 

a given permutation      by providing it with 

values      of which it obtains to its choosing 

either the image    ( ), or the inverse image 

     ( ). Depending on the answers      it 

obtains,   outputs either 0 or 1. 

The advantage of a superpseudorandom 

distinguisher in distinguishing a random 

permutation   from a perfect random permutation 

   is defined similary to the case of 

pseudorandom distinguishers. In this paper, the 

random functions we want to distinguish from the 

perfect random ones are built by embedding 

perfect random functions   
      

  into a structure 

 . The domain and range of   
      

  have 

variable size; it is smaller than the size of the 

domain and range of  (  
      

 ). The such 

structure   is sometimes called function (or 

permutation) generator. A function generator   is 

said pseudorandom if for all pseudorandom 

distinguishers A of which the number of queries   

is polynomial in   (block size), the advantage 

remains negligible (for N big enough). More 

formally: 
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Definition 5 ([12]). A function generator   is 

pseudorandom if for all polynomials  ( )  ( ), 

there is an integer      such that:      , 

for all pseudorandom distinguishers   allowed to 

make    ( ) queries, 

    ( (  
      

 )   )  
 

 ( )
  

Superpseudorandom permutations generators 

are defined similarly with respect to 

superpseudorandom distinguishers. 

C. H-coefficient technique 

In this section, we represent two Patarin’s 

main theorem which were used to prove 

pseudorandomness and superpseudorandomness 

of structures based on the Luby-Rackoff model. 

This is very useful method to receive the 

advantage of a distinguisher has in distinguishing 

a random function (permutation) from a perfect 

random function (permutation).  

  denotes the set of all  -tuples (       ) 

with            . Let        be a 

permutation generator, here we have     . 

Definition 6 ([9]).  Let   be an integer (  is 

number of queries). Let   (  )      be a 

sequence of pairwise distinct elements of   . Let 

  (  )      be a sequence of elements of   . We 

denote by  (   ) or simply by   if the context of 

the       is clear, the number of (       )    

such that: 

          (       )(  )      

We denote   be a subset of   
 

 obtain all  -

tuples   (       )                 . 

Next, we consider the advantage of the 

pseudorandom distinguisher, allowed to make 

encryption queries only, the superpseudorandom 

distinguisher which allowed to make both 

encryption and decryption queries. These 

advantage were mention in [9] by Patarin 

(Theorem 3.4, Theorem 3.5). However, in order to 

evaluate our scheme, we represent two variants of 

these above theorems as follows: 

Theorem 1 ([9]). Let   and   be real 

numbers,      . Let   be a subset of   
 

 such 

that | |      (   ). If: 

(1) For all     and for all     we have: 

 (   )  
| |

   
(   )  

 

 

Then 

(2) For every pseudorandom distinguishers   

allowed to make   encryption queries, we have: 

    ( (       )  
 )      

where     ( (       )  
 ) denotes the 

advantage to distinguish  (       ) ((       ) 

is uniformly chosen from  ) from a perfect 

random function      . 

Theorem 2 ([9]). Let     be a real number. 

 If: 

(1) For all     and for all     we have: 

 (   )  
| |

   
(   ) 

Then 

(2) For every superpseudorandom 

distinguishers   allowed to make   encryption 

and decryption queries we have: 

    ( (       )  
 )    

 (   )

    
 

where     ( (       )  
 ) denotes the 

advantage to distinguish  (       ) ((       ) 

is uniformly chosen from  ) from perfect random 

permutation      . 

III. THE DESCRIPTION OF THE SCHEME 

In this section, we propose an iterative 

scheme, called  -scheme, which used to construct 

a   -bit permutation from  -bit permutations. The 

1-round  -scheme is described as follows:  

 (  
    

 )(〈   〉)  〈  
 ( )   

 ( )    
 ( )〉  

Then,  -round of this scheme is the 

composition of   function 1-round. Thus, the    

 -bit permutations   
         

  make a   -bit 

permutation as follows: 

 (  
         

 )   (     
       

 )   
  (  

    
 )  

 We can use this scheme to build a SPN block-

cipher by choosing specific cryptographic 

elements. For example, the permutations 

     
       

      
  are expressed by the 

combination of the XOR key addition, the 

substitution transformation, the linear 

transformation on two semi-blocks ( -bit) as 

decribed in Fig 2 (the dashed parts). Then, we 

have a SPN block cipher with the round function 

transformed a   -bit block   (     ) to a   -

bit block   (     ) as follows: 
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- The XOR key addition uses round   -bit 

key   (     ) where    is of  -bit 

length. 

- The nonlinear layer   contains     -bit 

S-boxes (such that     ) can simply be 

represented by a transformation  ( )  

(     (     )     (  )) with   
     ‖     ‖ ‖  ‖   where    is the 

 -bit word. 

- The linear layer   performs  linear 

transformation through the linear 

transformation  -bit       as follows 

 ( )  (  (  )   (  )    (  )). 

In conclusion, the output of the round function 

will be obtained by the substitution and 

permutation transformation as follows   

 ( (   )).  

 

 

 

 

 

 

 

 

 

Fig 1. One-round  -scheme 
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Fig 2. Round function of SPN block cipher with 2n-bit 

block size, built from the proposed scheme 

 

 

In the following sections, we will evaluate the 

pseudorandomness and superpseudorandomness 

of the  -scheme. 

IV. THE PSEUDORANDOMNESS                       

OF THE  -SCHEME 

Fact 1. 1-round and 2-round  -scheme are 

not pseudorandom. 

Proof. 1-round. Let    be a distinguisher, it 

operates as follows: 

1.    chooses two values    (   )    
(    )     . 

2.    queries into any   over     to obtain 

    (  )  (   ) and     (  )  
(     ). 

3.    checks either      or not. 

4. If      then    return 1 else returns 0. 

Let   
  be the probability which    returns 1 

when   is a perfect random function. Thus, 

  
     . Let    be the probability which    

returns 1 when    (  
    

 ) (1-round   

scheme). Thus,      because     
 ( )    . 

So, we have the advantage the pseudorandom 

distinguisher    is      
(    )  |     

 |  

     . Thus, 1-round   scheme is not 

pseudorandom. 

2-round. Let    be a distinguisher, it operates 

as follows: 

1.   chooses two values    (   )    
(    )     . 

2.    queries into any   over     to obtain 

    (  )  (   ) and     (  )  
(     ). 

3.    checks either           or not. 

4. If           then    return 1 else 

returns 0. 

Let   
  be the probability which    returns 1 

when   is a perfect random function. Thus, 

  
     . Let    be the probability which    

returns 1 when    (  
    

    
    

 ) (2-round   

scheme). We have      because of     

  
 (  

 ( ))       . So the advantage the 

pseudorandom distinguisher    is 

     
(    )  |     

 |        . Thus, 2-

round   scheme is not pseudorandom □ 

 

 

 

 

𝑐 
  𝑐 
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When the number of round of  -scheme is 

greater two, using H-coefficient technique we 

have the following result: 

Proposition 1.  Let     be an integer. Let 

  
         

     are    (   ) perfect random 

permutations and        is a perfect random 

function. Let    (  
         

 ) denotes the 

random permutation associated with the  -

round  -scheme. For any pseudorandom 

distinguisher   allowed to make   encryption 

queries, we have: 

    (    )    
 (   )

  
  

 

 
Fig 3. 3-round  -scheme 

Proof. In order to prove this proposition, we 

need some notations.    denotes the subset of   
 
 

consisting of all the q-tuples of pairwise distinct 

  . For   (       )   (       )    
 

 we 

denote     means that            if and only if 

     . Let   {  (       )    

(  
    

 )                },     

(  
 )

      
   

 
 and    (  

 )
      

   
 
. Let 

(         ) are intermediate variables at round 

   . 

This proposition will be proven by using 

Theorem 1. It means that, we will construct a set 

  and find numbers   and  . 

Firstly, we consider the set  : 

  {  (       )    (  
    

 )   

            }  

Secondly, we establish a lower bound on | | 
to find  . We have 

| | 

 |   |  (    [(     )  (        )]) 

 |   |  (  ∑   [  
    

 ]

       

 ∑   [  
    

 

       

   
    

 ]) 

 |   | (  ∑ ∑ (  [  
   ]

           

   [  
   ])

 ∑ ∑ (  [  
    

   ]

           

   [  
    

   ])) 

 |   |  (    
 (   )

 
    )  

We can take   
 (   )

  . 

Thirdly, in order to find  , we will establish a 

lower bound on the number of permutation 

  (  
         

 ) such that  ( )    for all 

       . Now, we evaluate for three-round 

case, then we will generalize for the case    . 

This mean that we find a lower bound on the 

number of permutations (  
    

    
    

    
    

 ) such 

that  ( )              or: 

          

{
  

    
 (  

 (  
 (  

 ))    
 (  

 (  
 )    

 (  
 )))

  
    

    
 (  

 (  
 (  

 )    
 (  

 )))
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The number of permutations   
  such that 

  
 (  )     with       is |  |. We have 

                     so 

permutation   
  must satisfy   

 (  )    
 (  )  

  . In order to establish it we first evaluate the 

number of permutations   
  such that: 

  
 (  

 )    
 (  

 )    
 (  

 )    
 (  

 )       ( ) 

with        .  

 If   
    

  then there are no permutation 

realizes (1).  

 If   
    

    
    

  then there are no 

permutation realizes (1).  

 If   
    

    
    

  then   
 (  

 ) is 

determined by the value of   
 (  

 ). So the 

number of permutations   
  satisfy (1) is 

|  |

    
 

|  |

    .  

 This mean that there are at most 
 (   )|  |

    

permutations   
  such that  (   )         

such that (1). (Because there are 
 (   )

 
 pairs (   ) 

such that        ). Thus, we have at least 

|  | (  
 (   )

  ) permutations   
  satisfy 

  
 (  )    

 (  )    . The number of 

permutations   
  such that   

 (  )     for some 

      is |  |. We have       since      , 

so permutation   
  must satisfy  

  
 (  

 (  ))    
 (  

 (  )    
 (  ))          ( ) 

By the similar way above, there are at least 

|  | (  
 (   )

  ) permutations   
  satisfy (2). It is 

easy to see that the number of permutations   
  

such that   
 (  )     with       is |  |  

(    ) 

   
. Similarly, there are |  |  

(    ) 

   
 

permutations   
  such that   

 (  )        with 

        . 

From the above arguments, we have: 

  |  |  |  | (  
 (   )

  )  |  |

 |  | (  
 (   )

  )  |  |

 
(    ) 

   
 |  |  

(    ) 

   
 

 |  |  (  
 (   )

  )

 

 (
(    ) 

   
)

 

 

 |  |  (  
  (   )

  )  
 

    
  

Thus,     
 (   )

  .  

Next, we will find   in the case    .  So we 

establish the number of permutation   
(  

         
 ) such that  ( )    for all   

     . We evaluate by the following way: we 

will establish the number of permutations 

     
       

  such that              with 

       . We can assume that          

(because after the first round we can choose 

permutation   
  such that       as the 3 round 

case), since            
 (     ), so we have the 

number of permutations      
  is |  |. The 

permutation      
  must satisfy      

 (     )  
         because of          

 (     )  
     . By the similar method in the 3-round case, 

we have the number of permutations      
  is 

|  | (  
 (   )

  ). We now only need evaluate the 

number of permutations in the first and last round. 

Luckly, it is like the 3-round case that we have 

done. We have the number of permutations 

  
       

       
  are |  | |  |  

(    ) 

   
 |  |  

(    ) 

   
 respectively; for   

  we have at least 

|  | (  
 (   )

  ). Then, we have: 

  |  |   (
(    ) 

   
)

 

 (  
 (   )

  )

   

 |  |   
 

    

 (  (   )  
 (   )

  )  

Thus   (   )  
 (   )

  . 

Appling Theorem 1 with   
 (   )

   and 

  (   )  
 (   )

   we have the Proposition 1 □ 

The pseudorandomness of this scheme in 

Proposition 1 is still achieved when the perfect 

random permutations 2 -tuples (  
         

 )  are 

replaced by the perfect random functions 2 -

tuples (  
         

 ). 

IV. THE SUPPERPSEUDORANDOMNESS      

OF THE  -SCHEME 

Since 1-round and 2-round  -scheme are not 

pseudorandom so they are not 

superpseudorandom. For 3-round  -scheme, we 

have following fact: 
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Fact 2.  3-round  -scheme is not 

superpseudorandom. 

Proof. Let    be a distinguisher, it operates 

as folllows: 

1.    chooses two values    (   )    
(     )      such that          . 

2.    queries       into     to obtain (   ) 

and (     ). 

3.    queries (    ) and (    ) into   to 

obtain (   ) and (     ). 

4.    checks either           or not. 

If           then    returns 1 else 

returns 0. 

Let   
  be the probability which    returns 1 

when   is perfect random permutation over    . 

Thus,   
     . Let    be the probability which 

   return 1 when    (  
      

 ). Thus     . 

Indeed:  

Because of          ,  

  
 (  

 (  
 ( )    

 ( )))    
 (  

 (  
 (  )  

  
 (  ))); it mean that   

 ( )    
 ( )    

 (  )  

  
 (  ). So we have   

 ( )    
 (  )    

 (  )  

  
 ( ); it mean that   

 (  
 (  

 ( )    
 (  )))  

  
 (  

 (  
 (  )    

 ( ))). This mean that 

           So the advantage the 

superpseudorandom distinguisher    is 

     
(    )  |     

 |       . Thus, 3-

round   scheme is not superpseudorandom □ 

For the number round is greater than 4, we 

have following proposition: 

Proposition 2. Let     be an integer. Let 

  
         

     are    (   ) perfect random 

permutation and        is a perfect random 

permutation. Let    (  
         

 ) denotes the 

permutation associated with the  -round  -

scheme. For any superpseudorandom distinguisher 

  allowed to make   encryption and decryption 

queries we have:  

    (    )  
(   ) (   )

  
 

 (   )

     
  

Proof. In order to prove this proposition, we 

need some notations.    denotes the subset of   
 
 

consisting of all the q-tuples of pairwise distinct 

  . For   (       )   (       )    
 

 we 

denotes     means that            if and only 

if      . For     we denote   

(       )    (  
    

 ) and    (  
 )

      
. 

This proposition will be proven by using 

Theorem 2. It means that, we will find a number   

such that: 

   (   )  |  |   
 

     (   ). 

 

 
Fig 4. 5-round  -scheme 
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In order to find  , we establish a lower bound 

on the the number of permutations   
(  

         
 ) such that  ( )    for all     

 . We evaluate for five-round case, then we will 

generalize for the case    .  This mean that we 

find a lower bound on the number of permutations 

(  
      

 ) such that  ( )           or 

      : 

  
    

 (  
 (  

 (  
 (  

 (  
 ))

   
 (  

 (  
 )    

 (  
 ))))

   
 (  

 (  
 (  

 (  
 )

   
 (  

 )))

   
 (  

 (  
 (  

 ))

   
 (  

 (  
 )    

 (  
 ))))) 

  
    

    
 (  

 (  
 (  

 (  
 )    

 (  
 ))

   
 (  

 (  
 (  

 ))

   
 (  

 (  
 )    

 (  
 )))))   

The number of permutations   
  such that 

  
 (  )     with       is |  |. For such    

 , 

there are at least |  | (  
 (   )

  ) permutations 

  
  such that   

 (  )    
 (  )       . For 

     , the number of permutations   
  such that 

  
 (  )        is |  |. We take   

  such that 

  
 (  )          . In order to establish it 

we first evaluate the number of permutations   
  

such that   
 (  

 )    
    

 (  
 )    

  with 

       . If   
    

  then there are no 

permutation this condition because of      . If  

  
    

  then   
 (  

 ) is determined by the value 

of   
 (  

 ). So, there are 
|  |

    
 

|  |

     the number 

of permutations   
  such that   

 (  
 )    

  

  
 (  

 )    
 . This mean that there are at most 

 (   )|  |

   permutations   
  such that  (   )   

      such that   
 (  

 )    
    

 (  
 )    

 . 

(Because there are 
 (   )

 
 pairs (   ) such that 

       ).  

Thus, we have at least |  | (  
 (   )

  ) 

permutations   
  satisfy   

 (  )          . 

The number of permutations   
  such that 

  
 (  )        is |  |. We have permutation   

  

must satisfy   
 (  )              

because of         
 (  

 (  
 (  )    )). Let 

  be the number of the distinct values   
    

 . 

Thus, we have   
   

(    ) 
 values of    such that 

        . We will take a loose estimate the 

number of permutations   
  by adding the 

condition         . For a fix      , we 

will establish the number   
  as defined above such 

that         . In order to establish it we first 

evaluate      which denotes the number of values 

   such that   
    

    
    

  with     

    (note that    satisfy         ). If 

  
    

    
    

  then   
    

 , so there are 

not values    satisfy above condition. If   
  

  
    

    
  then   

  is determined by the 

expression   
    

    
    

 . Thus, there are 

  (    ) (      )  
 

    
 

 

     

elements of     . This mean that there are at most 
 (   ) 

   values    such that  (   )         

such that   
    

    
    

 . Thus, for a fix 

     , there are at least  (  
 (   )

  ) values 

   such that          and         . For 

the    as defined above we have   [  
 (  )  

     ]  
(    ) 

   
 because of      . Thus, the 

number of permutations   
  which such that 

  
 (  )              is greater than 

|  |  
(    ) 

   
  (  

 (   )

  ). Next, there are |  | 

permutations   
  such that   

 (  )          . 

The permutation   
  must satisfy   

 (  )     
      because of      

 (  )    
 (  

 (  )  
  ). Let   be the number of distinct values   

 . By 

the similar method above, there are at least 

|  |  
(    ) 

   
  (  

 (   )

  ) permutations   
  

such that   
 (  )           with   

   

(    ) 
. 

The number of permutations   
  such that 

  
 (  )     with       is 

|  |

 
. The number of 

permutations   
  such that   

 (  )        with 

         is 
|  |

 
. From the above arguments, 

we have: 
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 (   )  |  |  |  | (  
 (   )

  )  |  |

 |  | (  
 (   )

  )  |  |  |  |

 
(    ) 

   
  (  

 (   )

  )

 |  |  |  |  
(    ) 

   

  (  
 (   )

  )  
|  |

 
 
|  |

 
 

 |  |  (  
 (   )

  )

 

 (
(    ) 

   
)

 

 |  |  (  
  (   )

  )  
 

    
  

Thus,   
  (   )

  .  

Next, we will find   in the case    . So we 

will establish the number of permutations 

  (  
         

 ) such that  ( )    for all 

     . We will evaluate the number of 

permutations      
       

  such that           
   with        . We can assume that 

         (because after the first round we can 

choose permutation   
  such that       as the 5 

round case), since            
 (     ), so we 

have the number of permutations      
  is |  |. 

The permutation      
  must satisfy 

     
 (     )           because of     

     
 (     )       . By the similar method in 

5-round case, we have the number of permutations 

     
  is |  | (  

 (   )

  ). Also, we have the 

number of permutations   
       

       
  are equal 

|  |; there are at least |  | (  
 (   )

  )  |  |  
(    ) 

   
  (  

 (   )

  )  
(    ) 

   
  (  

 (   )

  ) 

permutations    
       

       
 , respectively; the 

number of permutations      
       

  is 
|  |

 
 
|  |

 
, 

respectively, with   
   

(    ) 
   

   

(    ) 
 and     

are the number of distinct value   
    

    
 . 

From above agruments we have: 

  |  |   (
(    ) 

   
)

 

 (  
 (   )

  )

   

 

 |  |   
 

    
 (  (   )  

 (   )

  
) 

Thus,   (   )  
 (   )

  . 

Appling Theorem 2 with   (   )  
 (   )

   

we have: 

    (    )  
(   ) (   )

   
 (   )

      □ 

For 4-round  -scheme, we have not proved 

the superpseudorandomness as well not find a 

distinguisher to affirm that 4-round  -scheme is 

not a superpseudorandom permutation. However, 

if we use Theorem 2 it is easy to see that this 

technique can not apply. Indeed, let     we 

choose   (     )   (     ) with    
(   )    (    )    (   )    (   ) and 

                  . We assume that 

   (  
      

 ) be a function such that  ( )  
 . As 3-round and 5-round, we use intermediate 

variables to establish easier. We have   
  

  
 ( )    

  and   
    

 ( )    
    

 (  )  
  

    
 , so   

    
 (  

 )    
 (  

 )    
 . This 

mean that   
    

 (  
 )    

    
 (  

 )    
  

  
 , so   

    
 (  

 )    
 (  

 )    
 . Then, we 

have       
 (  

 )    
 (  

 )      

contradicted with the supposition that     
   . Thus,  (   )    this means that we can 

not apply Theorem 2 to establish the 

superpseudorandomness for 4-round  -scheme. 

VI. CONCLUSION 

In this paper, we proposed the new scheme, 

called  -scheme, and analyzed in detail the 

pseudorandomness and superpseudorandomness 

of this scheme. The theoretic results show that  -

scheme need at least three rounds to reach 

pseudorandomness, while the 

superpseudorandomness is achieved when the 

number of round is greater than or equal 5. 

However, we have not established the 

superpseudorandomness for 4-round  -scheme. 

When we use Theorem 2 to evaluate 4-round  -

scheme, we realize that with     there are 

values   and   such that    . This mean that if 

we want to prove 4-round  -scheme is 

superpseudorandom then we need a more 

effective approach. Thus, it is an open problem for 

future research directions. In summary, the results 

in this paper allow the designer to build block 

ciphers or cryptography primitives based on block 

ciphers resisted to generic attacks as chosen 

ciphertext attack, chosen plaintext attack. 

According to the  -scheme, we can build 128-

bit SPN block ciphers from 64-bit permutations, 

that are implemented effectively on the current 

64-bit platform. 
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