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Evaluating pseudorandomness and
superpseudorandomness of the iterative
scheme to build SPN block cipher

Abstract— In this paper, the iterative scheme,
namely the 7V-scheme, is proposed constructing
block ciphers. Then, the pseudorandomness and
superpseudorandomness of this scheme are
evaluated by using the Patarin’s H-coefficient
technique. In particular, the pseudorandomness of
V-scheme is achieved in the case that the number of
round is at least 3, and V-scheme is
superpseudorandomness in the case that the
number of round is greater than or equal 5.
However, we have not yet evaluated
superpseudorandomness of this scheme when the
round is 4.

T6m tit— Trong bai bio nay, ching tbi dwa ra
lwoc dd l3p goi 1a lwge dd V dung dé xay dung mia
khéi. Sau d6, dwa ra cic két qua danh gia tinh gia
ngiu nhién va siéu gia ngiu nhién cia lrge do nay
dwogc dwa ra dya trén ki thuit hé sé H ciia Patarin.
Trong d6, tinh gia ngiu nhién caa lwge dé dat dwoc
khi s0 vong ciia lge d6 13 16n hon hoic bang 3. Poi
v6i tinh siéu gia ngiu nhién, ching t6i da chimg
minh lwge dd dat dwgc khi s6 vong 16n hon hoic
bang 5; con khi s6 vong bing 4 chiing ti chwa giai
quyét dwge trong bai bio nay.

Keywords: block cipher structure,
pseudorandomness; superpseudorandomness; H-
coefficient technique.

Tir khéa: ciu tric ma khdi, gia ngdu nhién; siéu
gia ngiu nhién; ky thuit hé sé H.

I. INTRODUCTION

In order to construct a secure block cipher, the
scheme of block cipher structure plays an
important role. Cryptographic designers usually
choose a scheme based on structures such as SPN,
Feistel, ARX,... and evaluate security of these

scheme by their pseudorandomness and
superpseudorandomness [1-5] which are described
in [6]. The pseudorandomness and

superpseudorandomness of schemes will ensure
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that an attacker which have unbounded (but finite)
computation capabilities, can not distinguish the
scheme from a perfect random function
(permutation) with a non-negligible probability. In
this model, a block cipher is considered as a
random function (or a random permutation)
associated with a randomly selected key. In [8],
Henri Gilbert and Marine Minier stated that the
strongest security requirement one can put on a f
random function or permutation representing a
key dependent cryptographic function is that f be
undistinguishable with a non-negligible success
probability from a perfect random function f* or
permutation c*, even if a probabilistic testing
algorithm A of unlimited power is used for
that purpose.

Related results. The pseudorandomness and
superpseudorandomness of a block cipher
structure have been attracting research attention in
the cryptography community. In 1988, Luby and
Rackoff proposed the formal definitions of
pseudorandomness and superpseudorandomness
of block ciphers in [6]. In addition, they
demonstrated that the 3-round Feistel structure is
pseudorandomness and 4-round Feistel structure is
superpseudorandomness. Patarin presented the H-
coefficient technique and used it to prove these
two results (see [7]). In [8], Gilbert and Minier
used a simpler but rather effective approach based
on Patarin’s two main theorems to evaluate the
pseudorandomness and superpseudorandomness
for L and R schemes. In addition, at the SAC
conference in 2009, Patarin systematized his
theorems and formally introduced the H-
coefficient technique to evaluate the secure of
some block cipher schemes (see [7]). Hence, the
H-coefficient technique is indeed an effective
method for evaluating the secure of some

encryption schemes and it is improved
continuously (see [9]). For the SPN structure, the
results of pseudorandomness and

superpseudorandomness are actually attracting
research attention in the world [10, 11].


file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_1
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_6
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_8
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_6
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_7
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_8
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_7
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_9
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_10
file:///D:/TailieuKHMM/Tuananh/luocdoV/Final/Baibaodichtienganh10_2_24_5.docx%23_ENREF_11

Nghién ciru Khoa hoc va Cong nghé trong linh vuC An toan théng tin

However, the approach of these results are
based on the assumption that S-boxes are random
permutation and diffusion layer is not specific in
the evaluation model which makes it is difficult
to evaluate.

Our contribution. In this paper, we
considered the V scheme for constructing a SPN
block cipher where the pseudorandomness and
superpseudorandomness are evaluated in detail
based on the H-coefficient technique. Specifically,
the pseudorandom distinguishers with a non-
negligible probability for 1-round and 2-round of
scheme are given. Then, the theoretical result
represented  that  3-round  V-scheme s
pseudorandomness. Finally, the
superpseudorandomness of V-scheme is considered.

Outline. This paper organized as follows:
Section 2 represents some notations, security
models and methods using Patarin’s H-coefficient
technique. Section 3 describes the iterative
scheme considered in this paper. Section 4 and 5
respectively show the evaluation results of the
pseudorandomness and superpseudorandomness
of our scheme. Finally, some conclusions and an
open problem are given.

Il. PRELIMINARIES

A. Notations

Through this paper we are using the following
notation: I,, denotes the Z}, F;, ,,, denotes the set of
functions from I,, into I,,,, F, denotes the set of
functions from I,, into I,,, B, denotes the set of
permutations on I,: thus | F, .| = 2™2".

B. The security model

First, we represent the definition of a
pseudorandom distinguisher as follows:

Definition 1 ([12]). Let n,m>1. A
pseudorandom distinguisher is a deterministic
algorithm A with unbounded (but finite)
computation capabilities, which given a function
F:I, = I, can query it by asking values x € I,, of
which it obtains the image y = F(x). Depending
on the answers y € I,,, it obtains, A output either
Oorl.

A random function of F, ,, is defined as a
random variable f of F,,, and can be view as a
probabilitiy distribution (Pr[f = ¢Dger,,, Over
F, m- A random function (a random permutation,
respective) is a function (permutation) which is
randomly chosen from F,,,(B,) with a fixed
probability. Thus, we have the definition of a

perfect random function random

permutation) as follows:

Definition 2 ([8]). We define a perfect
random function f* of F, ,, as a uniformly drawn
element of F, ;. In other words, f* is associated
with the uniform probability distribution over
F,m. We define a ¢* perfect random permutation
on I, as a uniformly drawn element of B,. In other
words, c¢* is associated with the uniform
probability distribution over B,.

Next, we define the advantage of a
distinguisher A in distinguishing a random
function F from a perfect random function F*:

Definition 3 ([12]). Let F be a random
function, F* be a perfect random function. The
advantage a pseudorandom distinguisher A has
in distinguishing F from F* is:

Adv,, = |Pr[AF = 1] = Pr[AF =1]| (1)

Pseudorandom  distinguishers as defined
above are allowed to make encryption queries

only. Superpseurandom distinguishers are allowed
to make decryption gueries:

Definition 4 ([12]). Let N>1. A
superpseudorandom distinguisher is a
deterministic algorithm <A with unbounded (but
finite) computation capabilities, which can query
a given permutation C € Py by providing it with
values x € Iy of which it obtains to its choosing
either the image y = C(x), or the inverse image
y = C~1(x). Depending on the answers y € I it
obtains, A outputs either 0 or 1.

The advantage of a superpseudorandom
distinguisher in  distinguishing a random
permutation C from a perfect random permutation
C* is defined similary to the case of
pseudorandom distinguishers. In this paper, the
random functions we want to distinguish from the
perfect random ones are built by embedding
perfect random functions f7', ..., f{" into a structure
¢. The domain and range of f7,...,f; have
variable size; it is smaller than the size of the
domain and range of ¢o(fy,...,f;i). The such
structure ¢ is sometimes called function (or
permutation) generator. A function generator ¢ is
said pseudorandom if for all pseudorandom
distinguishers A of which the number of queries g
is polynomial in N (block size), the advantage
remains negligible (for N big enough). More
formally:

(perfect
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Definition 5 ([12]). A function generator ¢ is
pseudorandom if for all polynomials P(N), Q(N),
there is an integer Ny, € N such that: VN > N,
for all pseudorandom distinguishers A allowed to
make g < Q(N) queries,

1
Adv 4 (p(f1 o, [0 FT) < PN

Superpseudorandom permutations generators
are defined similarly with  respect to
superpseudorandom distinguishers.

C. H-coefficient technique

In this section, we represent two Patarin’s
main theorem which were used to prove
pseudorandomness and superpseudorandomness
of structures based on the Luby-Rackoff model.
This is very useful method to receive the
advantage of a distinguisher has in distinguishing
a random function (permutation) from a perfect
random function (permutation).

K denotes the set of all t-tuples (fy, ..., ft)
with fieP,,1<i<t. Let G:K—- Py be a
permutation generator, here we have N = 2n.

Definition 6 ([9]). Let g be an integer (q is
number of queries). Let X = (X;)1<icq be a
sequence of pairwise distinct elements of I. Let
Y = (Y;)1<i<q be a sequence of elements of I,. We
denote by H(X,Y) or simply by H if the context of
the X;,Y; is clear, the number of (fi,...,ft) €K
such that:

Vi,1<i<q,G(f1,...f)X) =Y.

We denote X be a subset of I} obtain all g-
tuples X = (Xq, ..., Xq), Xi € Iy, Vi # j: X; # X;.

Next, we consider the advantage of the
pseudorandom distinguisher, allowed to make
encryption queries only, the superpseudorandom
distinguisher which allowed to make both
encryption and decryption queries. These
advantage were mention in [9] by Patarin
(Theorem 3.4, Theorem 3.5). However, in order to
evaluate our scheme, we represent two variants of
these above theorems as follows:

Theorem 1 ([9]). Let @« and B be real
numbers, a, 8 > 0. Let E be a subset of I} such
that |E| > 2V9 . (1 — ). If:

(1) Forall X € X and for all Y € E we have:

K|

H(X,Y) ZZTq

1-a);
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Then

(2) For every pseudorandom distinguishers A
allowed to make g encryption queries, we have:

Advg(G(fy, o f) f)<a+p
where Adv,(G(fy, ..., ft), f*) denotes the

advantage to distinguish G(fy, ..., fr) ((f1, -, ft)
is uniformly chosen from K) from a perfect

random function f* € Fy.
Theorem 2 ([9]). Let € > 0 be a real number.
If:
(1) Forall X € X and for all Y € X we have:

H(X,Y) >ﬂ(1 —€)
, W

Then

2 For every superpseudorandom
distinguishers A allowed to make g encryption
and decryption queries we have:

q(q —1)
22N
where Adv4(G(cyq,...,c),c*) denotes the
advantage to distinguish G(cy, ..., ¢t) ((cq, -, Ct)
is uniformly chosen from K) from perfect random
permutation c* € Py.

Advy(G(cq, e Cp), ") < €+

I1l. THE DESCRIPTION OF THE SCHEME

In this section, we propose an iterative
scheme, called V-scheme, which used to construct
a 2n-bit permutation from n-bit permutations. The
1-round V-scheme is described as follows:

¢(ci, ¢5)(a, b)) = (c5(b), ci(a) D c5(b)).

Then, r-round of this scheme is the
composition of r function 1-round. Thus, the 2r
n-bit permutations cg, ...,c5,.—; make a 2n-bit
permutation as follows:

d(coy s Cor—1) = P(C3p—1,Cor—2) © ...
* %
o ¢(cq, o).

We can use this scheme to build a SPN block-

cipher by choosing specific cryptographic
elements. For example, the permutations
Cyr—1,Cor—2,,Co are expressed by the

combination of the XOR key addition, the
substitution transformation, the linear
transformation on two semi-blocks (n-bit) as
decribed in Fig 2 (the dashed parts). Then, we
have a SPN block cipher with the round function
transformed a 2n-bit block X = (X;,X,) to a 2n-
bit block Y = (Y3, Y,) as follows:
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- The XOR key addition uses round 2n-bit
key K = (Ky,K,) where K; is of n-bit
length.

- The nonlinear layer S contains 2k w-bit
S-boxes (such that kw = n) can simply be
represented by a transformation S(X) =

(Szr—1(x2k-1), -, So(x0))  with X =
Xop—1l1%2k—21l .- |1 [|xo Where x; is the
w-bit word.

- The linear layer P performs linear
transformation  through  the linear

transformation n-bit Py, P; as follows
P(X) = (Po(Xo):PO(Xo) () P1(X1))-
In conclusion, the output of the round function

will be obtained by the substitution and
permutation transformation as follows Y =
P(SX ® K)).
2 o
Fig 1. One-round V-scheme
X1 Xo
D Ky r======" >~ ~~~~—~ |
BT e
! - }
} S-bo: S-b } } S-box S-box }
} Sor s | } Sea So |
[ b !
! - I
} . \
! n-bit linear } | n-bit linear }
} transformation Py } } transformation Pg }
| L 1
I R B I RS
Y, Yo

Fig 2. Round function of SPN block cipher with 2n-bit
block size, built from the proposed scheme

In the following sections, we will evaluate the
pseudorandomness and superpseudorandomness
of the V-scheme.

IV. THE PSEUDORANDOMNESS
OF THE V-SCHEME

Fact 1. 1-round and 2-round V-scheme are
not pseudorandom.

Proof. 1-round. Let A, be a distinguisher, it
operates as follows:

1. A, chooses two values X; = (a, b), X, =
(a',b) € I,,.

2. A4 queries into any f over F,, to obtain
i=fX)=(d) and Y, =f(X,) =
(c',d").

3. A, checks either ¢ = ¢’ or not.

4. If ¢ = ' then A, return 1 else returns 0.

Let p; be the probability which A, returns 1
when f is a perfect random function. Thus,
pi = 27" Let p; be the probability which A,
returns 1 when f = ¢(cyc;) (L-round V
scheme). Thus, p; = 1 because ¢ = c5(b) = ¢'.
So, we have the advantage the pseudorandom
distinguisher A, is Adv, (f,f") =I|p1 —pil =
1—2"" Thus, 1-round PV scheme is not
pseudorandom.

2-round. Let A, be a distinguisher, it operates
as follows:

1. A chooses two values X; = (a,b), X, =

(a’,b) € I,,.

2. A, queries into any f over F,, to obtain
Yi=fX) =(cd) and Y, =f(X;) =
(c’,d".

3. A, checkseitherc @ d = ¢’ @ d’ or not.

4. Ifcdd=c" @ d then A, return 1 else
returns 0.

Let p; be the probability which A, returns 1
when f is a perfect random function. Thus,
pi = 27" Let p; be the probability which A,
returns 1 when f = ¢(cg, c1,¢3,¢3) (2-round V
scheme). We have p; = 1 because of c P d =
c3(cg(b)) =c' @ d'. So the advantage the
pseudorandom distinguisher A, is
Advg,(f,f*) =Ipy —pil =1-27". Thus, 2-
round V scheme is not pseudorandom o
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When the number of round of V-scheme is
greater two, using H-coefficient technique we
have the following result:

Proposition 1. Let n > 0 be an integer. Let
Co» -r Cor_1 € By are 2r (r = 3) perfect random
permutations and f* € F,, is a perfect random
function. Let f = ¢(cg, ..., c3r—1) denotes the
random permutation associated with the r-
round V-scheme. For any pseudorandom
distinguisher A allowed to make g encryption
queries, we have:

. q(g—1)
Adqu(f,f)ST"Z—n.
" x0

(o Co

x
I
s/
x° xt
Cg E:}
Pl I
w1/
¥ y°

Fig 3. 3-round V-scheme

Proof. In order to prove this proposition, we
need some notations. I* denotes the subset of I,/
consisting of all the g-tuples of pairwise distinct

I™. For x = (xl, ...,xq),y = (yl, ...,yq) €Il we
denote x~y means that Vi, j, x; = x; if and only if

yi=y. Let X ={X=(X,..X5) X =
(xi,x0) € In, Vi # j, X; # X}, xt =

44 S84 2.CS (06) 2017

t q t _ (.t q
(xi)i=1..q61n and y —(yi)izl__qeln. Let
(x2t*1 x2t) are intermediate variables at round
t<r.

This proposition will be proven by using
Theorem 1. It means that, we will construct a set
E and find numbers a and S3.

Firstly, we consider the set E:
E={Y=(Y,..Y).Y; = y)»
eyt @y’ er}
Secondly, we establish a lower bound on |E]|
to find 5. We have
|E|
= |In|?- (1 =Pr[(y' ¢ () V° D y' € 17)])

21l (1= > Privt =y}l

1<i<j<q

- ) Py

1<i<j=q

= yJO (43} y]l]

=llt 1= YT > erlyt =]

1<i<j=<q s€ly
. Pr[yj1 = s])

- D ) ey @yl =t

1<i<j=q t€l,

Prly) @y} =t])

-1
> |12n|q.<1_2.%.2—n)_

We can take g = %.

Thirdly, in order to find 8, we will establish a
lower bound on the number of permutation
f =(c5 -, Cop_1) sSuch that f(X) =Y for all
X e X,Y € E. Now, we evaluate for three-round
case, then we will generalize for the case r > 3.
This mean that we find a lower bound on the
number of permutations (cg, ¢, ¢3, ¢3, €3, cz) such
that f(X) =Y, VX € X,VY € E or:

Vi,1<i<gq,

vi = i3 (c6(x9) @ 3 (ci (D) @ i (D))
vl @0 = ci e (ci(x) @ (D))



Nghién ciru Khoa hoc va Cong nghé trong linh vuC An toan théng tin

The number of permutations c; such that
cg(x%) = x3 with x3~x° is |P,|. We have
yODylel*=>xel*=>x2€el” SO
permutation c; must satisfy c;j(x') @ cj(x°) €
I*. In order to establish it we first evaluate the
number of permutations c; such that:

ci(xl) @ co(x) = ci(x)) © c3(x)) (D)
withl1<i<j<gq.
o If x) = x{ then there are no permutation
realizes (1).

o If x)#x?,x/ =xi then there are no
permutation realizes (1).

o If x)#x)x#xf then ci(x}) is
determined by the value of ¢;(x}). So the
number of permutations c; satisfy (1) is

|Pp| < |Pn|.
2n—1 — 2n-1
i —-1)|P
This mean that there are at most Z4-21n! 273' nl

permutations ¢; such that 3(i,j), 1 < i<j<q
such that (1). (Because there are 4= q(q ) pairs (i, /)
such that 1 <i <j < q). Thus, we have at least
| P, | (1 - Q(Z—;l)) permutations ¢;  satisfy
g D cj(x®) er*. The  number  of
permutations c; such that c;(x?) = x> for some
x> € I* is |P,|. We have x* € I* since y' € I,
S0 permutation c; must satisfy
c3(cg(x)) B (i B cg(xD) e 1*  (2)
By the similar way above, there are at least
P, |(1 (G 1)) permutations c; satisfy (2). It is

gasy to see that the number of permutations c;
such that c;(x*) =y! with y*€I* is |P,|-

(2" —q)! .. 2"-q)!
T Similarly, there —are |P,|-—

permutations c: such that cz(x°) = y* @ y° with
yl ea yO € I¢.
From the above arguments, we have:

H= PRI |<1—%>-|Pn|
-|Pn|<1—% 1Pyl
(2 "2— q)! Pl (2 ”2:!61)!
I <1 _ q(qZZ 1)) . <(2n2:!®!>2
> |R,I° - (1 - ZQ(Zn_ D) ' zzlnq-

Thus, a = 2 - q(‘;l).

Next, we will find « in the case r > 3. So we
establish the number of permutation f =
(cgy ) C3r—1) Such that f(X) =Y for all X €
X,Y € E. We evaluate by the following way: we
will establish the number of permutations
Cyi—1,Cor—p Such that x2t*1 x2t e [* with
2<t<r-—1. We can assume that x?t=2 € I*
(because after the first round we can choose
permutation c¢; such that x? € I* as the 3 round
case), since x2¢*1 = ¢3,_,(x2t72), so we have the
number of permutations c3;_, is |P,|. The
permutation c3,_, must satisfy c2t Y @

x?t*1 e [* because of x%'=c3_(x**" V) D
2”1 . By the similar method in the 3-round case,
we have the number of permutations c3;_; is

|2, | (1 — M) We now only need evaluate the

number of permutations in the first and last round.
Luckly, it is like the 3-round case that we have
done. We have the number of permutations

"-q)!
CS'C;r—lfC;r—z are |Pn|;|Pn| oM |P|
@"-q)! ; .
- respectively; for c¢; we have at least

P, |(1 —M) Then, we have:

. (@ =) ala-D\
o (B2 245

> 1P g
-(1—(7‘—1)'%).
Thus a = (r—l)-%.
Appling Theorem 1 with g = Q(qn Y and

1)- q(q 1)

a=(r- we have the Proposition 1 o

The pseudorandomness of this scheme in
Proposition 1 is still achieved when the perfect
random permutations 2r-tuples (cg, -*+, c3,—1) are
replaced by the perfect random functions 2r-

tuples (fo, -+, far—1)-

IV. THE SUPPERPSEUDORANDOMNESS
OF THE V-SCHEME

Since 1-round and 2-round V-scheme are not
pseudorandom SO they are not
superpseudorandom. For 3-round V-scheme, we
have following fact:
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Fact 2. 3-round V-scheme is not
superpseudorandom.

Proof. Let A5 be a distinguisher, it operates
as folllows:

1. A5 chooses two values Y; = (¢, d),Y, =

(c',d)el,suchthatc @ d=c" P d'.
2. A5 queries Y, Y, into £~ to obtain (a, b)
and (a’, b").

3. Aj; queries (a,b") and (a’,b) into f to
obtain (s, t) and (s’,t").

4. As checks either s @t =s' @ t’ or not.
If s@t=s"@t then A5 returns 1 else
returns 0.

Let p3 be the probability which A5 returns 1
when f is perfect random permutation over P,,.
Thus, p5 = 27™. Let p; be the probability which
Az return L when f = ¢(cg, ..., cz). Thus p; = 1.
Indeed:

Because of chd=c"dd,
e (c3(ci(@ ® 5 (1)) = c3 (c3(c @) B
co (b'))); it mean that ci(a) @ c5(b) = c1(a’) B
cy(b"). So we have c¢j(a) ® c5(b") =ci(a’) D
co(b); it mean that cg (c;(c{(a) &) cg(b’))) =

¢ (c3(ci(@) B ci(b))).  This  mean that
s@t=s"@t’. So the advantage the
superpseudorandom  distinguisher A3 s
Advy,(f.f*) = Ips —p3l =1—-27". Thus, 3-
round V scheme is not superpseudorandom o

For the number round is greater than 4, we
have following proposition:

Proposition 2. Let n > 0 be an integer. Let
€y -rCor—q1 € B, are 2r (r = 5) perfect random
permutation and f* € P,, is a perfect random
permutation. Let f = ¢(cg, ..., c3r—1) denotes the
permutation associated with the r-round V-
scheme. For any superpseudorandom distinguisher
A allowed to make g encryption and decryption
gueries we have:

r—1 -1 -1

Adv.(f. f*) < ( )an(q ) q(zzzn )

Proof. In order to prove this proposition, we
need some notations. I* denotes the subset of I,/
consisting of all the g-tuples of pairwise distinct
I". For x = (xl, ...,xq),y = (yl, ...,yq) € Iff we
denotes x~y means that Vi, j, x; = x; if and only
if y,=y;. For XeX we denote X=
(X1, . Xg), Xi = (x},x?) and x* = (xf)

i=1.q°
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This proposition will be proven by using
Theorem 2. It means that, we will find a number e
such that:

1

H(X,Y) = |P|*" - g (L—©).

X X
| |
€ Q
Pl
L
o % X’
€3 cq

[§]

H—q
. X @

~

]
=

e

Fig 4. 5-round V-scheme
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In order to find €, we establish a lower bound
on the the number of permutations f =
(cgy -+ C3r—1) SuUch that f(X) =Y for all X,Y €
X. We evaluate for five-round case, then we will
generalize for the case r > 5. This mean that we
find a lower bound on the number of permutations
(cg, - €5) such that f(X)=Y,vVX,YE€X or
Vi<i<g:

vt =c; (c; (c:; (c3 (o))
® c; (ci(x)) ® c; (xg)))>
®c (cé‘ CIGE
® c5(+)))
® ci (<3 (o))
o (st @ (1))

YOy =c <CZ <C§ (G @)
® ci (< (c3 )
0 (<) @ (1)) )

The number of permutations c; such that
cy(x®) = x3 with x3~x9% is |B,|. For such cg,
there are at least |B,| (1 —M) permutations
c; such that c¢f(x1) @ c5(x%) =x% € I*. For
x? € I, the number of permutations c; such that
c;(x?) =x5 €17 is |P,|. We take c¢; such that
c;(x®) @ x> = x* € I*. In order to establish it
we first evaluate the number of permutations c;
such that cg(x?) &) xi5 =c3 (xf) <) xj5 with
1<i<j<gq. If x} =x7 then there are no
permutation this condition because of x° € I*. If
x} # x} then c3(x7) is determined by the value

P
of c3(x3) So, there are - ' "' < Z'nnll

of permutations c; such that c3(x}) D x} =
c3(x?) @ xP. This mean that there are at most

q(q—l””n' permutations ¢ such that 3(i,j), 1 <

i < j < g such that c3(x3) @ x} = c3(x3) D x
q(q

the number

(Because there are
1<i<j<q).

palrs (i,j) such that

Thus, we have at least |B,| (1 - %)
permutations ¢; satisfy c3(x3) @ x° = x* € I*.
The number of permutations c¢; such that
ci(x?) = x7 € I* is | B,|. We have permutation c:
must  satisfy  ci(x®) @ x7 =xC~y1 P y°
because of y* @ y° = c; (5 (cs () @ x7)). Let
k be the number of the distinct values y;} @ y?.
values of x® such that

2n
Thus, we have a = Ty

x6~y1 @ y°. We will take a loose estimate the
number of permutations c¢: by adding the
condition x® @ x” € I*. For a fix x” € I*, we
will establish the number c¢ as defined above such
that x® @ x7 € I*. In order to establish it we first
evaluate S; ; which denotes the number of values
x® such that x® @ x/ = xj6 ®D xj7 with 1 <i <
j<gq (note that x° satisfy x6~y1 @ yO).

yr®yl = y} ®y) then x? = xP, so there are
not values x® satisfy above condition. If y! @

)=y} @y} then x? is determined by the
expression x] =xP D x/ ®x7 Thus, there are
2n(2" —2) - (2" k+1)_2n1 2:‘_1

elements of Sij . This mean that there are at most

M values x® such that 3(i,j),1<i<j <gq

such that xl- @xi = xj @xj.
x”7 € I*, there are at least a(l - ) values

x© such that x6~y! @ y° and x® @ x” € I*. For
the x® as defined above we have Prlci(x°) @

7 (szq) because of x° € I*. Thus, the
number of permutations c: which such that
ci(x®) D x7 =x~yr1 @y°® is greater than

|B,| - (22;‘1)! a (1 —%). Next, there are |B,|
permutations ¢; such that c;(x®) = x°~y° @ y?.
The permutation ¢; must satisfy c;(x”) @ x° =
x8~yl because of y! =ci(x®) =c5(c;(x”) B
x%). Let t be the number of distinct values y;'. By
the similar method above, there are at least
(2"-q)! q(q—1) . «
| Py - o B (1 _T) permutations ¢
n
such that ¢;(x”) @ x° = x8~yt with g = (2721 |t)|
of permutatlons cg such that

';' The number of

Thus, for a fix
q(q-1)
2

x” =x°] =

The number
cg(x®) = y1 with x8~y?
permutatlons c9 such that c(x%) = y° @ y?* with
xO~y0 @yt s ! ”' From the above arguments,
we have:
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HEXY) = Bl - [P (1 —M) Y

271

q(g—1)
'|Pn|<1_2—n>'|Pn|'|Pn|
-t _a@-D
¢ 2n
2" —q)!
'|Pn|'|Pn|'T
(120 =D 1A 1A
2n B «
_ippofq_9@=DY" (@ -a) ?
- | nI - on : on|
= | nI - on 'Zan'
Thus, e = 2441
1 Zn .

Next, we will find € in the case r > 5. So we
will establish the number of permutations
f =(cy -, Cr_1) SUch that f(X) =Y for all
X, YeX. We will evaluate the number of
permutations c3,_q,c3¢_, such that x2t*1 x2t €
I* with 2<t<r-—3. We can assume that
x2t=2 € I* (because after the first round we can
choose permutation c; such that x? € I* as the 5
round case), since x2t*1 = ¢3,_,(x%t72), so we
have the number of permutations c5;_, iS |By,|.
The permutation Cot_1 must  satisfy
o1 (2D @ x2*1 e I* because of x?t =
C3e_1(x%71) @ x2t*1, By the similar method in
5-round case, we have the number of permutations

Gy i |Pn|(1—@). Also. we have the

n

number of permutations cg, c;,_g, C3r—4 are equal
|P,|; there are at least |pn|(1_q(q 1)) Pl

2n!
permutations  cj, ¢5,_s, Cor_3, respectively; the
|Pn| |Pr |

number of permutations c5,_q,C5,_, IS —= R
(zn t)' and k,t
are the number of distinct value yi @ y?,y?.
From above agruments we have:

(@ =\ alq— D\

ny

. . 2M
respectively, with a = —(zn_k),'ﬁ

q(¢ —1)
2 1B (1- - - T2
Thus, e = (r—1) -%.

). a(q-1)

Appling Theorem 2 with e = (r — 1 o
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we have:

Adv 4 (f, f) < (r—l)zqn(q—l) + qz(qz;t) -

For 4-round V-scheme, we have not proved
the superpseudorandomness as well not find a
distinguisher to affirm that 4-round V-scheme is
not a superpseudorandom permutation. However,
if we use Theorem 2 it is easy to see that this
technique can not apply. Indeed, let g =2 we
choose X = (X1,X,),Y =Y, Y,) with X; =
(a,b),X, = (a',b),Y; =(c,d),Y, =(e,f) and
a+ad,c®d=e®f,Y, #Y,. We assume that
f = ¢(cg, ..., c7) be a function such that f(X) =
Y. As 3-round and 5-round, we use intermediate
variables to establish easier. We have x3 =
cg)=x3 and xZ=cj(a)Dx3#ci(d)D
x3 =x%, SO x15 =c3(x?) # cz(xz) =x3. This
mean that xf =ci;(x3) @ x} # c3(x23) @ x5
x5, 0 x] =ci(xf) # ci(x3) = xJ. Then, we
have cOd=c;(x])#c3(x))=e®f
contradicted with the supposition that c @ d =
e @ f. Thus, H(X,Y) = 0 this means that we can
not apply Theorem 2 to establish the
superpseudorandomness for 4-round V-scheme.

VI. CONCLUSION

In this paper, we proposed the new scheme,
called V-scheme, and analyzed in detail the
pseudorandomness and superpseudorandomness
of this scheme. The theoretic results show that V-
scheme need at least three rounds to reach
pseudorandomness, while the
superpseudorandomness is achieved when the
number of round is greater than or equal 5
However, we have not established the
superpseudorandomness for 4-round V-scheme.
When we use Theorem 2 to evaluate 4-round V-
scheme, we realize that with g = 2 there are
values X and Y such that H = 0. This mean that if
we want to prove 4-round V-scheme is
superpseudorandom then we need a more
effective approach. Thus, it is an open problem for
future research directions. In summary, the results
in this paper allow the designer to build block
ciphers or cryptography primitives based on block
ciphers resisted to generic attacks as chosen
ciphertext attack, chosen plaintext attack.
According to the V-scheme, we can build 128-
bit SPN block ciphers from 64-bit permutations,
that are implemented effectively on the current
64-bit platform.
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