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Parameterization of Edwards curves on the
rational field Q with given torsion subgroups

Abstract— Extending Harold Edwards’s study
of a new normal form of elliptic curves, Bernstein et
al. generalized a family of curves, called the twisted
Edwards curve, defined over a non-binary field k
given by an equation ax? + y? = 1 + dx?y?, where
a,d € k\{0},a # d. The authors focused on the
construction of efficient formulae of point adding on
these curves in order to use them in the secure
cryptographic schemes. Theoretically, the authors
showed how to parameteries Edwards curves
having torsion subgroup Z/12Z or Z/27 X Z/8Z
over the rational field Q. In the main result of this
paper, we use the method which Bersntein et al.
suggested to parameterise Edwards curves with the
given torsion subgroups which are Z/4Z, 7Z/8Z, or
Z/27 x Z/4Z over Q.

Tém tit— P& mé rong nghién ciu cia Harold
Edwards vé mdt dang chuin tic méi cho cac dudong
cong elliptic, Bernstein cling céng sw da tdng quat
héa mot lop cac dwong cong, goi la cac dwong cong
Edwards cudn, dinh nghia trén truong k cé dic so
khdc 2 cho béi phuong trinh ax?+y?=1+
dx*y?, trong d6 a,d € k\{0},a # d. Cic tic gia da
tip trung vao viéc xay dung cac cong thirc cong
diém hiéu qua trén 16p dwong cong nay phuc vu cho
muc tiéu sir dung chiing trong cic lwgc dd mat ma
an toan. Vé mit ly thuyét, cac tac gia da chi ra cach
tham s hoéa cac dwong cong Edwards ¢ nhém con
x0in Z/127 hoic Z/27 x 7,/8Z trén trwong hiru ti
Q. Trong két qua chinh ciia bai bao nay, chiing t6i
s€ sit dung phwong phap ciia Bernstein va cfng sw
dé tham so6 hoa dwong cong Edwards véi nhdm con
xoin da biét 12 Z/47Z, 7./8Z, hoic Z/27 x 7./4Z trén
trueong Q.

Keywords: Edwards curve; twisted Edwards
curve; torsion subgroup.

Tir khoa: Puwiomg cong Edwards; dudng cong
Edwards cudn; nhém con xofn.

I. INTRODUCTION

In 2007, Harold Edwards [5] proposed a new
normal form for elliptic curves. By generalizing
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an example originally from Euler and Gauss,
Edwards introduced a new addition law for the
curves x? +y? = c2(1 + x%y?) defined over a
non-binary field k. Although the paper of
Edwards did not focus on applying this normal
form of elliptic curves in cryptography, but
gradually, with subsequent studies, this form has
shown desirable and useful cryptographic
properties by comparison with Weierstrass
normal form.

Following this work, in [1, 2, 3, 4], Bernstein
et al. generalized Edwards study to generalize
curves given by an equation of the form ax? +
y? =1+ dx?y?, with a # d,a,d € k\{0}. They
combined the Edwards idea of addition formula
and dual addition law which was proposed by
Hisil et al. in [6] to propose the unique formula for
both addition and doubling laws. This is an
essential proposal to result a group structure for a
set of points on twisted Edwards curves in
general, and Edwards curves in particular. This
unique formula is a basic concept to use the
normal form of Edwards in cryptography to be
against channel attacks that exploits a power
difference in computation between addition and
doubling formulas.

The use of addition law, Bernstein et al. [2]
showed a parameterization method of Edwards
curves so that they have torsion subgroups given
on the rational field Q. However, authors only
presented the parameterization for two case of
torsion subgroups Z/12Z and Z/27Z X Z/8Z. In
this paper, we present this method for remaining
of torsion subgroups which are Z/4Z, Z./8Z, and
Z/27 x 7./ AL.

The rest of paper is constructed as follow. The
section Il presents basic concepts of the normal
form of Edwards curves, i.e. Edwards and twisted
Edwards curves. The next section presents the
parameterization of Edwards curves to have
torsion subgroups given on Q. In the section 1V,
we summarize the main results of paper.
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1. EDWARDS NORMAL FORM

A. Definitions

In this section, we present Edwards curves
and twisted Edwards curves from the general form
of Bernstein et al. [1].

Definition 1 ([1]). Let k be a field whose
characteristic is not 2, and an element d €
k\{0,1}. The Edwards curve with coefficient d,
called Eg, 4, is a curve given by an equation:

Epq:x? +y? =1+ dx?y? (1)

A Twisted Edwards curve with coefficients
a,d, called Eg,q4, is a curve given by an
equation:

Eggqaiax? +y? =1+ dx%y?, 2)
where a,d € k\{0},a # d.

Definition 2 ([1]). Assuming that E is a curve

over k. A quadratic twist of E is a curve E' that is

isomorphic to E on the Galois field K/k with
[K:k] = 2.

It can be easily seen that the twisted Edwards
curve Epggiax?+y%=1+dx%y? is a
quadratic twist of the Edwards curve Eg 4/q: X +
Y2=1+(d/a)X?Y%2. The map (x,y)+—
(xVa,y) = (X,Y) is an isomorphism from Eg 4 4
to Eg 4/, OVer the Galois field k(va). Therefore,
if a is a square in k then Eg ; 4 is isomorphic to
Egq/q ON k.

Here is a definition of Montgomery elliptic
curve that is necessary for results represented in
next sections.

Definition 3 ([1]). The Montgomery curve,
Ey 4 g, defined over a field k is a curve given by
an equation:

Eyap:Bv? =u? + Au? +u, ()
where A € k\{—2,2} and B € k\{0}.

Due to B € k\{0}, we can divide two sides of
this equations by B3, and get:

B =) 21 +20®) @
Set X=_,¥=—

- we get an equation of
Weierstrass form:

y2=x3+2x2+1x (5)
B B
Therefore, a map (u, v) — (%g) transforms
a curve of Montgomery to a Weierstrass form. In
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other words, a Montgomery curve is a particular
case of elliptic curves with general Weierstrass form.

The next lemma gives a relationship between
a twisted Edward curve and a Montgomery curve.

Lemma 1 ([1]). Every twisted Edwards curve
Egoq over k is birationally equivalent to a
Montgomery curve Ey 4:Bv? = u® + Au? + u,
where A=2(a+d)/(a—d) and B=
4/(a—4d).

B. Addition Law

Bernstein et al. [1] constructed the addition
law on twisted Edwards curve which is a
generality of the addition formula of Edwards
presented in [5].

Definition 4 ([1]). Let k be a field with
char(k) # 2, and Eg 4 4: ax? + y? = 1 + dx?y?,
with a,d € k\{0},a # d is a twisted Edwards
curve over k. Let (x1,y1), (x3,v,) be two points
on Eg 4 4. Then the sum of these points over Eg , 4
is defined by

(x3,¥3) = (X1, y1) + (x2,y2) =
( X1Y2+X2Y1  Y1Y2—AX1Xp ) (6)
1+dx1x,y1y; " 1-dx1 %Y1,/

The neutral element is (0,1), and the negative
of (x1,y1) is (‘ xl'yl)-

As it was shown by authors in [1], the
addition law in Definition 5 is correct and
complete if a is a square in k and d is a nonsquare
in k, i.e. the addition law is well-defined on every
pair of points on twisted Edwards curve Eg , 4.
Moreover, this law works for doubling, i.e. the
case in which (xq,y;) = (x3, y2). However, there
is a case in which this addition is not well-defined,
i.e. denominators in the above formula equal 0, in
other words dx,x,y;y, € {—1,1}. The following
lemma shows particular cases of the exception.

Lemma 2. Let Ex, 4 be a twisted Edwards
curve over k. Assuming there exists «, 8 € k such
that a? = a, 82 = d. Given two arbitrary points
(x1,¥y1), (x5, y2) on the curve. Then, dx,x,y;y, €
{—1,1} if and only if (x,,y,) € S in which S is a

seflof_[ioints Siﬁ__’;) (_li__yli_ﬁixi) (?é)
(@B—xé)’ @) G ) )
)

Proof. Necessity: Assume that dx,x,y,y, €
{1,—1}. Then, x1,x,,y1,y, # 0, and if we fix
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X1,v1, then x,,y, are roots of the system of
equations

{(1 — dx1%21Y2) (1 + dx1x3y1y,) =0

ax? +y2 =1+ dx2y2. )

By solving the system of equations above, we
get (x4, y,) being points given by the statement of
the lemma.

Sufficiency: Conversely, by substituting the
points of S for (x,,y,), we compute and get
directly results from the lemma.

It can be easily seen that the addition law in
Definition 5 contains two coefficients a,d of the
curve. By a requirement to reduce a dependence
on these coefficients when computing the addition
law, Hisil, Carter, Wong, and Dawson in [6] built
a new addition law, called Dual Addition as follows:

(x3,¥3) = (x1,y1) + (x2,2)
_ (x1y1 +X2Y2 X1Y1 — szz)

~ \nys +axyx, Xy, — yix,

This addition formula only depends on a
unique coefficient a of the curve. The authors in
[6] have shown that, this formula and the addition
law in Definition 5 have the same results when the
both are defined. However, there is a weakness of
the Dual Addition that it does not work for
doubling computation: if (xq,y;) = (x3,y,) the
computation of second coordinate
(x1y1 — %2¥2)/ (x1y2 — x2y1)  results  0/0.
Despite of this weakness, the well-defined of dual
addition have advantages on an efficient of
computation [6].

Similar to the addition in Definition 5, we
indicate exception cases of the dual addition on
the twisted Edwards curve when a,d are squares
on k.

Lemma 3 ([6]) . With an assumption similar
to Lemma 2, then (y;y,+ axixy)(x1y, —
y1x,) = 0 if and only if (x,,y,) €S’ , where
S7 is a set containing points (xi,v;),

ram, (). (Zne). (o)

well-defined.

C. A complete addition formula

In the previous subsection, we represent two
addition formulas on the twisted Edwards curve.
However, as seen on Lemmas 6 and 7, both of

these formulas have drawbacks that exists
exception cases to not make the addition work. It
means that they are not a well-defined operation
on a set of points, called Eg,4(k), of twisted
Edwards curve Eg,4 with a,d € k\{0}, a # d
arbitrary. To overcome this drawback and
construct a binary operation on the whole set of
points of the twisted Edwards curves, D.J.
Bernstein and T. Lange [4] provide a solution as
follows. They embed the set of twisted Edwards
curve Eg 4 4 into in P* x P!, and indicate cases in
which the addition law in Definition 5 does not
work to use the formulae of Dual Addition and
vice versa. Then the addition law is really a binary
operation on the whole set of points of the twisted
Edwards curves.

Fixed a twisted Edwards curve, Egggq4,
defined by an equation

Epgqiax? +y? =1+ dx?y? 8)
over the field k whose characteristic is not 2,

a,d € k\{0}, a # d. The projective closure of
Egqq in Pk X Py is

EE,a,d(k) =
{ ((X:2),(Y:T)) € P X Py } ©)
aX?T? 4+ Y272 = 72T2 4 dx2y2)

Each point (x,y) on affine curve Eg,g4,
embedded as usual into PL x P: by (x,y) —
((x:1), (y: 1)). Conversely, a point
(X:2),(Y:T)) €Egqa(k) with ZT #0 is
corresponding to a point of coordinate
(X/Z,Y/T) on affine curve Eg 4 4.

For ZT = 0, we consider two cases (X:Z) =
(1:0)or (Y:T) = (1:0).

If (X:Z) = (1:0) the equation of the curve
becomes aT? = dY?. Then, we have two points
((X:2),(¥:T)) = ((1: 0), (+y/a/d: 1)), and
these points are defined over the extension field
k(y/a/d). The authors in [4] show that these

points correspond to (1:0: 0) in projective closure
of Eg 4 4 in P2.

If (Y:T)=(1:0), then the equation of the
curve becomes Z2 = dX?. Then, we also have
two points ((X:2),(Y:T)) = ((1: +Vd), (1: 0)),
and these points are defined over the extension

field k(Vd).
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The authors in [4] also show that these points
correspond to (0:1:0) in projective closure of
Egqq in P2 By using the represent of
coordinating points, the authors [4] proved the
following results to construct a complete addition
law over twisted Edwards curves.

Theorem 1 ([4]). Let Eg,q be a twisted
Edwards curve defined over k. Assuming P, P, €
Egaa(k) with Py =((X;:Zy),(Y1:Ty)) and
P, = ((X5:Z3), (Y5: T,)). We define

X3 = X, Y, Z,Ty + X,V 24T,
Z3 = Z1Z,TT, + dX,; X, V1Y,
Y = V1Y,2,7, — aX, X, Ty T,
Ty = Z,Z,TyT, — dX; X,V Ys;
and
Xs =XV, Z,T, + X, Yo, 2, Ty
Zy = aX, X,ToTy + Y,Y,2, 2,
Y5 =XNZ,T, — X, Yo ZiTy
Ts =X,Y,2Z,T) — X,Y, 2, T,.

Then, XsZ; =X; Z; and YiT; =Y, Ts.
Moreover, at least one of following case are hold:

e (X3,Z3) # (0,0) and (Y3,T3) # (0,0),
o (X5,Z; )% (0,0) (Vs ,T5 ) #
(0,0).
By the above theorem, an addition law over
twisted Edwards curve is constructed as follow.

Theorem 2 ([4]). Let Eg,4 be a twisted
Edwards curve and define
Py, Py, X3,Ys, Z3, T3, X5 ,Ys , Z3,T3 as in
Theorem 1. Define P; = P; + P, as follow:

and

e P3= ((X3:Z3), (Y35T3)) if (X3,Z3) #
(0,0) and (Y5, T5) # (0,0);

o Po=((X5:25),(% :T5)) if
(X5 ,Z5 )# (0,00 and (Y ,T; ) #
(0,0);

o If both cases are applicable, then P; is
defined arbitrarily by one of the above
definitions.

Then P; € Eg 4 4 (k).

6 S6 2.CS (06) 2017

Then, we have a fact on the set of points over
twisted Edwards curve.

Theorem 3 ([4]). By the addition law defined
as in the Theorem 2, the set of points Eg , 4 (k) is
an Abel group whose neutral element is
((0:1),(1:1)) and the negative of P, =
((X1:Z1)» (Y1:T1)) |_5 ((_Xl:Zl)v (Y1:T1))-
Moreover, the group Eg,4(k) is isomorphic to
Ep ap(k), where

(U:V:W) € P2 }
BV2W = U® + AU?W + UW?

is the projective closure in P2 of the
Montgomery curve

EM,A,B (k) = {

Epap:Bv? = ud + Au® + u,

with  A=2(a+d)/(a—d) and B=

4/(a—d).

By a directive way of computation, we can
determine particular points of low order in the
group Eg o 4 (k) of a twisted Edwards curve.

Theorem 4 ([2]). Assume that Eg 4 4:aX? +
Y2 =1+ dX?Y? is a twisted Edwards curve over
k whose char(k) # 2. Then:

1. The point of order 1 or the neutral element in
Egqa(k)is ((0: 1), (1: 1)).
2. The points of order 2 in E 4 4(k) are:

e ((0:1),(-1:1)).

o (o) (x/ajd:1))ifa/d =52 s €k.
3. The points of order 4 in Eg , 4 (k) are:

. ((1: +va), (0: 1)) ifa=r%r€k.

. ((1: +Vd), (1: 0)) ifd =t%t€k.
((£4/=s7a:1), (£45:1)) i a/d = 5%

s and —s/a are squares in k, where the
signs may be chosen independently.

4. The points of order 8 in Eg 4 4(k) doubling to
((1: £va), (1:0)) are:

e ((X:1),(£rX:1)) with r>2=a, X €k,
satisfied adX* — 2aX? +1 = 0.

5. The points of order 8 in Eg , 4(k) doubling to
((1: +Vd), (1: 0)) are:
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o ((X:1),(1:+sX)) with s?=d, X€k
satisfied adX* — 2dX? +1 = 0.

6. The points of order 3 in Eg , 4 (k) are:

((x:1),(Y:1)) with X,Y € k\{0} satisfied
aX?+Y?=1+dx?v?=-2Y.

I1l. PARAMETERIZATION OF EDWARDS
CURVES WITH TORSION SUBGROUPS
GIVEN OVER RATIONAL FIELD Q

Assuming that € is an elliptic curve over the
rational field @, and notate £(Q) be a group of
points of this curve. According to the Mordell-
Weil theorem ([7, Theo.8.17]), we have £(Q) to
be a finitely generated abelian group. In particular,
using the theorem on structure of a finitely
generated abelian group ([7, Theo.B.4]), it can be
shown that

EQ =& @QBT,

in which &,,-(Q) notates a finite subgroup, called
torsion subgroup of the elliptic curve € over Q,
and r = 0 is an integer, called the rank of £(Q).
In a simple way, it can be called that &,,.(Q) is
the torsion part and Z" is the free part of the group
of points on elliptic curve £(Q). Therefore, to
determine the group of points of elliptic curves
over @, we must identify the torsion subgroup
Ewor(Q) and the free rank r. In this section, we
consider the torsion subgroup of curves of
Edwards forms.

Related to the structure of torsion subgroups
on elliptic curves over the field Q, the following
classical theorem, called Mazur Theorem,
indicates that:

Theorem 5 (Mazur Theorem [7]). Let € be
an elliptic curve defined over Q. Then the torsion
subgroup, &;,-(Q), of £(Q) is isomorphic to one
of the following:

gtor(@)
{Z/mZ,with 1<m<10or m=12
Z/27 X Z/2mZ, with 1 <m < 4.

~

Now, we consider a case of Edwards E
defined over the field k = Q with d € Q\{0,1}.
We consider following note.

Note 1. Asssume that E:x?+y?=1+
dx?y? is an Edwards curve defined over Q with
d=+0,1.

Then, from Theorem 3, the point group of E
is isomorphic to the point group of the elliptic
curve :

Eyap:Bv? =ud + Au® +u,
where A=2(1+d)/(1—-d) and B =
4/(1-d). The map (uwv)— X, ¥) =% ")

B’B
transform Ey 4p into an elliptic curve of
Weierstrass form.

A 1
Y =X34+-X2+—=X
+B +BZ ’

or
1+d

(1-a)?
£:Y2 = x3 X2 X.
M T

Then, we have an isomorphism

Etor (Q) = gtor (Q)

According to the case 3 of Theorem 4, the
Edwards curve E always has a point of order 4
that is (1,0), in other words, it is ((1: 1), (0: 1)),
so from Mazur’s Theorem, it follows that, the
torsion subgroup E,-(Q) of E can only be
isomorphic to one of groups Z/4Z, Z./8Z, 7./ 12Z,
Z/2Z X Z/4Z or Z)2Z % 7./ 8.

Mazur’s Theorem and Note 1 give us the
possibility of torsion subgroup Ei,.(Q) of
Edwards curve defined over @ without knowing
of what parameters to provide that torsion
subgroup. To solve this, in [2] the authors point
out the parameterization of Edwards curves whose
torsion subgroups are Z/127Z and Z/27Z X 7./ 8Z,
respectively. The following theorems provides of
particular results.

Theorem 6 ([2]). The Edwards curve
E:x?+y? =1+ dx?y? defined over Q has a
point of order 3, or equivalently, the torsion
subgroup E;,,-(Q) of E is isomorphic to Z/127Z if
and only if

(@ +tA)(A -4t +t?)
- +1v)?
Theorem 7 ([2]). The Edwards curve
E:x?+y?=1+dx?*y? defined over Q has
torsion subgroup E;,,-(Q) isomorphic to Z/2Z x

Z/8Z and has points of order 8 doubling to
(£1,0) if and only if

vt € Q\{0, +1}.
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(t? — 2)%(t? + 4t + 2)?
d= ,Vt
(t2 +2t+2)*

€ Q\{-2,—1,0}.

For the remaining of paper, we present the
parameterization of Edwards curves defined over
Q@ whose torsion subgroups are Z/4Z, 7Z./8Z or
Z/27Z X L/4AZ, respectively.

Theorem 8. The Edwards curve E: x% + y? =
1+ dx%y?, d € Q\{0,1} has torsion subgroup
E;,(Q) isomorphic to Z/8Z if and only if d is
not square in Q and d = (2a? —1)/a* where
a € Q\{0,+1}.

Proof. Necessity: Assume that an Edwards

curve E:x?+y? =1+ dx?y? defined over Q
such that

Etor(Q) = Z/8L.

Due to Z/8Z has only a point of order 2, so
the group of points of E are the same. By the
second case of Theorem 4, E has a point of order
2 which is (0,—1), it means the point
((0:1),(—1:1)), and it is a unique point of order
2 on E if and only if d is not a square. In addition,
with this value of d, E has only two points of
order 4 by the third case of Theorem 4 which are
(1,0) and (—1,0). Now, we assume P be a point
of order 8 of E. Following the fourth case of
Theorem 4, we have P = (a,t+a) where a €
Q\{0} satisfying the equation dx* —2x?2 +1 =
0. Due to P is a point on E, so we must have
a # +1, because if it is not, it leads to d = 1, that
iS against the assumption of d # 1. Moreover, the
curve equation results to d = (2a? — 1)/a* and

da® + % =2. We rewrite dx*—-2x?>+1=
dx* — (daz +%)x2 +1=dx*(x—a)(x+
(x—a)(x+a) 1
a) — xag{# =x—-—a)(x+a) (dx2 —ﬁ).
Because d is not a square, so that dx? — % # 0in
Q. So, the equation dx* — 2x2 + 1 = 0 has only

two roots a and - a, and by the Theorem 4, E has
only four points of order 8: (a,a), (a,—a),
(—a,—a) and (—a, a).

Therefore, if E.,-(Q) = Z/8Z, d must satisfy
to be not a square in Q and d = (2a? — 1)/a*
with a € Q\{0, +1}.

Sufficiency: Conversely, if
d=a?—-1)/a* for a € Q\{0,+1} and d is
not a square. So d # 0,1.
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Then the Edwards curve defined over Q
E:x?+y% =1+ dx?y?

has only a point of order 2 and two points of
order 4 because of Theorem 4. Moreover, by
assumption d = (2a? — 1) /a* leads to « satisfies
the equation dx*—2x2+1=0 so, by the
Theorem 4, it implies that (a, +a) are points of
order 8 on E. Due to d is not a square, the
equation dx* —2x2+ 1 = 0 has only two roots
of a and - a in Q. Therefore, all of points of order
8 of E are (a,a), (—a,—a), (a,—a), and
(-a,a). Lastly, we use the Mazur's theorem to
get

Etor(Q) = Z/8L.

Theorem 9. The Edwards curve E: x? + y2 =
1+ dx?y? defined over Q has the torsion
subgroup E;,,-(Q) isomorphic to Z/2Z x Z/AZ if
and only if d =s? where s € Q\{0} such as
(s?2x* —2x% + 1)(s?x* —2s%x2+1) #0 for
all x € Q.

Proof. Necessity: Assume an Edwards curve
E has a torsion subgroup Ei,.(Q) = Z/2Z X
Z/4Z. Then, due to Z/27Z X Z/4Z has only three
points of order 2, four of order 4, and no points of
order 8, it is the same for E. According to
Theorem 4, this case appears if and only if d # 0
is a square in Q, i.e d=s? with s € Q\{0}.
Moreover, due to E does not have a point of order
8, so the equation (s?x*—2x2+ 1)(s%x*—
252x? + 1) = 0 does not have any roots on Q by
Theorem 4.

Sufficiency: Conversely, we have an Edwards
curve E:x% + y% = 1 + dx?y? defined over Q in
which d satisfies conditions from the theorem.
Then, use of Theorem 4 to compute directly, we
conclude the Edwards curve E to contain only
three points of order 2, four of order 4, and no
point of order 8. Therefore, by the theorem of
Mazur, we obtain

Eior(Q) = Z/27Z X 7L/ 41L.

From the above results, we have a
consequence on parameterization of Edwards
curve over Q with given torsion subgroups.

Corollary 1. Given d € Q\{0,1}. An Edwards
curve E defined over Q by an equation

E:x? +vy?2 =1+ dx?y?
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has a torsion subgroup E;,-(Q) which is
isomorphic to Z/47Z if and only if d does not held
any conditions shown in above Theorems 6, 7, 8, 9.

Proof. We conclude the corollary by the use of
Note 1 and Theorems 6, 7, 8, 9.

V. CONCLUSION

In this paper, we represented basic concepts on
the generality of Edwards curves called twisted
Edwards curve, and the addition law from the set
of their points. The paper focuses on the
parameterization of Edwards curves having the
given torsion subgroup over the rational field Q.
The main results are presented in the Theorems
16, 17 and Corollary 18.

Studying the parameterization of Edwards
curves to be useful in construction a family of
Edwards curves which are suitable to
cryptographic applications. In [2], the authors use
the parameterization of Edwards curves to
construct the suitable curves for applying in the
Elliptic Curve Method (ECM) to factor in
factorization of integer numbers.

However, the parameterization in this paper is
considered only for the Edwards curves, not for
the case of twisted Edwards curves. The ability in
cryptography application from these curves are
also not mentioned. These problems are clearly
interesting with many practical meanings that
needs to further investigations.
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